Code: 1GC31

II B.Tech. I Semester Supplementary Examinations May/June 2016 Mathematics-II

(Common to CE \& ME)
Time: 03 Hours

Answer any five questions

All Questions carry equal marks (14 Marks each)

1. a) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.
7M
b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{rrr}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$ and hence find its inverse.
2. a) Given that $f(x)=\left\{\begin{array}{cc}-\pi, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$. Find the Fourier series for $f(x)$. Also deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots \cdots=\frac{\pi^{2}}{8}$.
b) Obtain the half range sine series for $f(x)=e^{x}$ in $0<x<1$.
3. a) Derive the partial differential equation by eliminating the constants from the equation $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
b) A tightly stretched string with fixed end points $x=0$ and $x=L$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{L}\right)$ if it is released from rest from this position, find the displacement $y(x, t)$.
4. a) Determine the root of $x e^{x}-2=0$ by method of false position.
b) Using Lagrange's formula, express the function $\frac{x^{2}+x-3}{x^{3}-2 x^{2}-x+2}$ as a sum of partial fractions.
5. a) Find the value of y at $x=0.1$ by Picard's method, given that

$$
\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1 .
$$

b) Apply Runge-Kutta method of $4^{\text {th }}$ order, to find an approximate value of y when $x=0.2$ given that $\frac{d y}{d x}=x+y, y(0)=1$.
6. a) Determine $\frac{d y}{d x}$ at $x=2$ from the data below:

$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{y}:$	0	1	8	27	64	125

b) Use Simpson's $1 / 3^{\text {rd }}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking seven coordinates.

7M
7. a) Show that for $f(z)=\left\{\begin{array}{ll}\frac{x y^{2}(x+i y)}{x^{2}+y^{4}}, z \neq 1 \\ 0 & z=\end{array}\right.$ the Cauchy-Riemann equations are satisfied at the origin but the derivative of $f(z)$ at origin does not exist.
b) Find the analytic function $f(z)=u+i v$ where $u=\frac{\sin 2 x}{(\cosh 2 y-\cos 2 x)}$.
8. a) Use Cauchy's integral formula to evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$ where C is the circle $|z|=2$.

7M
b) Find the Laurent series of $f(z)=\frac{(z-2)(z+2)}{(z+1)(z+4)}$, for \quad (i) $1<|z|<4 \quad$ (ii) $|z|>4$. 7M

Code: 1G237

II B.Tech. I Semester Supplementary Examinations May/June 2016

Electrical Engineering and Electronics Engineering

(Mechanical Engineering)
Max. Marks: 70

- Many

Time: 03 Hours
Answer any five questions All Questions carry equal marks (14 Marks each)

1. a) In the circuit of Fig. 1 there are eight circuit elements. Find $V_{R 2}$ (the voltage across $R 2$) and the voltage labeled V_{x}.

Fig. 1
b) Determine the Total resistance of the network between AB terminals shown in Fig 2.

Fig. 2
2. a) Derive emf equation for $D C$ Generator.
b) An 8 Pole,Lap Wound armature rotated at 350 rpm is required to generate 260 V . The useful magnetic flux per pole is 0.05 Wb .if the armature has 120 slots. Calculate the number of conductors per slot.
3. a) Explain losses in the single phase transformer. Derive the formula for efficiency. 9 M
b) In a 50 KVA transformer,the iron loss is 500 W and full load copper loss is 800 W . Find the efficiency at full load at 0.8 p.f. lagging. 5M
4. a) Explain the Principle of operation of Alternator. 7M
b) Explain the principle of operation of Three phase Induction Motor. 7M
5. a) Explain the operation of PN junction diode with its VI characteristics. 10M
b) Explain diode applications. 4M
6. a) Explain working of PNP \& NPN transistors 8M
b) Explain SCR Characteristics and its applications. 6M
7. Explain the concept of Induction Heating and also discuss about various Industrial Applications of Induction Heating. 14M
8. Explain the working and function of each block of CRO with the help of neat diagram 14M

Code: 1G531

II B.Tech. I Semester Supplementary Examinations May/June 2016
(Mechanical Engineering)
Max. Marks: 70
Time: 03 Hours

Answer any five questions

All Questions carry equal marks (14 Marks each)
$* * * * * * * * *$

1. a) Explain the following :
(i) Stress
ii) Strain and iit
ii) Bulk modulus

6M
b) A metal bar $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ section is subjected to an axial compressive load of 500 kN . The contraction on 20 cm gauge length is found to be 0.5 mm and the increase in thickness is 0.045 mm . Find the value of Young's modulus and Poisson's ratio.
2. a) Explain the Shear force and Bending moment diagrams.
b) Draw the complete shear force and bending moment diagrams for the beam shown in Figure 1, with all salient points

Figure 1
3. a) What do you mean by simple bending? State the assumptions in the theory of simple bending.
b) A rectangular beam $80 \mathrm{~mm} \times 40 \mathrm{~mm}$ is 3 m long and simply supported at its ends. It carries a load of 1 kN at the mid span. Determine the maximum bending stress induced in the beam.
4. A beam simply supported over a span of 2 m carries a UDL of $20 \mathrm{kN} / \mathrm{m}$ over its entire length. The cross-section of the beam is a T-section having flange $125 \times 25 \mathrm{~mm}$ and web $25 \times 175 \mathrm{~mm}$. Draw the shear stress distribution over the depth of the beam section.
5. a) Derive the torsion formula applied to circular shafts.
b) What diameter of the shaft will be required to transmit 80 kW at 60 rpm , if the maximum torque is 30 percent greater than the mean and the limit of torsional stress is to be 56 Mpa . If the modulus of rigidity is 84 Gpa , what is the maximum angle of twist in 3 m length?
6. A 2 m long cantilever made of steel tube of section 150 mm external diameter and 100 mm thick is loaded as shown in Figure 2. If $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ then calculate
(i) The value of 'W' so that the maximum bending stress is $150 \mathrm{MN} / \mathrm{m}^{2}$
(ii) The maximum deflection of the loading

Figure2
7. A bar of length 4 m when used as a simply supported beam and subjected to a uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$ over the whole span, deflects 1.5 cm at the center. Determine the crippling loads when it is used as a column with the following end conditions.
(i) Both ends pin jointed
(ii) One end fixed and the other hinged
(iii) Both ends hinged
8. a) Explain stresses in thin cylindrical shells. 4 M
b) A bronze sleeve of 20 cm internal diameter and 6 mm thick is pressed over a steel liner 20 cm external diameter and 1.6 cm thick, with a force fit allowance of 0.008 cm on diameter. Treating both as thin cylinders find (i) the radial pressure at the common surface (ii) the hoop stress and (iii) the percentage of the fit allowance met by the sleeve and liner.
\square

Code: 1G532

II B.Tech. I Semester Supplementary Examinations May/June 2016

Metallurgy \& Material Science

Time: 03 Hours
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Explain in detail the stages of crystallization of metals.
b) Differentiate between a crystal, dendrite and a grain.
2. a) Write down the classification of alloys. Explain briefly each alloy system.
b) What is the necessity of alloying when pure metals are available after extraction?
3. a) Metal A melts at $650^{\circ} \mathrm{C}$ and metal B melts at $450^{\circ} \mathrm{C}$. When alloyed together, A and B does not form any compound or intermediate phase. Solid solubility of metal A in B and B in A is negligible. The metal pair forms a eutectic at $300^{\circ} \mathrm{C}$ with 40% A and 60% B. Assume that the liquidus lines are straight. Draw the phase diagram for the alloy series and find:
(i) temperature at which 70% of A and 30% of B starts and completes solidification
(ii) for the same alloy, find the amount of solid phase and liquid phase at $400^{\circ} \mathrm{C}$
b) What is coring? How is it handled? 5 M
4. a) What is S.G. Iron? What are its applications?
b) What is the effect of manganese as an alloying element in steel? What is
Hadfield steel? What are its properties and applications?
5. Explain in detail the procedure in construction of TTT diagram. Superimpose the cooling curves of annealing, normalizing and hardening on the TTT diagram for a typical eutecoid steel.
6. a) Write down the properties and uses of copper.
b) Write notes on Brasses.
7. Write notes on
(i) Bullet Proof glasses
(ii) Cermets
(iii) Carbon composites.
8. Explain the Electrical processes of steel making. 14M

II B. Tech. I-Semester Supplementary Examinations May/June 2016 Thermodynamics
 \author{ (Mechanical Engineering)

}

Max. Marks: 70
Time: 03 Hours
Answer any five questions All Questions carry equal marks (14 Marks each)

1. a) Show that work is a Path function and not a property.
b) A gas expands according to the equation $\mathrm{PV}=100$ where P is the pressure in KPa and V is the specific volume .The initial pressure of the gas is 1000 KPa and the final pressure is 500 KPa . The gas is then heated at constant volume back to its original pressure of 1000 KPa . Determine the work of combined process. Also sketch the process on $\mathrm{P}-\mathrm{V}$ coordinates
b) A refrigerant vapour enters the condenser of a refrigeration plant with 223 $\mathrm{KJ} / \mathrm{Kg}$ enthalpy and leaves with $65 \mathrm{KJ} / \mathrm{kg}$ enthalpy. Cooling water enters at $15^{\circ} \mathrm{C}$ and leaves $20^{\circ} \mathrm{C}$. Calculate the mass flow rate of water per unit flow rate of refrigerant. Take $\mathrm{C}_{\mathrm{pw}}=4.186 \mathrm{KJ} / \mathrm{KgK}$
2. a) Explain the two statements of Second law of Thermodynamics
b) Three Carnot Heat Engines HE1, HE2, HE3 are connected in series. They are working with same thermal efficiency. The heat supplied to the entire system is 2400 kW and heat rejected from entire system is 300 kW . Calculate work done for each engine.
3. a) Water flows through a Turbine in which friction causes the water temperature to rise from $35^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. If there is no heat transfer, how much does the entropy of the water change in passing through the Turbine? Assume that the process can be as constant volume process.
b) Derive Maxwell relations and deduce two "Tds" equations 10M
4. a) Describe the process of formation of steam 4M
b) Two boilers one with super heater and other without super heater are delivering equal quantities of steam into a common main pipe. The pressure in the boilers and main pipe is 20 bar. The temperature of steam from boiler with super heater is $350^{\circ} \mathrm{C}$ and in the main pipe is $250^{\circ} \mathrm{C}$. Determine the quality of steam supplied by the other boiler.
b) 0.5 kg of air is compressed reversibly and adiabatically from $80 \mathrm{kPa}, 60^{\circ} \mathrm{C}$ to 0.4 MPa , and is then expanded at constant pressure to the original volume. Calculate work transfer and heat transfer for the whole path.
5. Two vessels $A \& B$, both containing Nitrogen are connected by a valve which is opened to allow the contents to mix and achieve an equilibrium temperature of $27^{\circ} \mathrm{C}$. Before mixing the following information is known about the gases.
Vessel A : $P=1.5 \mathrm{Mpa}, \mathrm{t}=50^{\circ} \mathrm{C}$, contents $=0.5 \mathrm{~kg} \mathrm{~mol}$.
Vessel B: $P=0.6 \mathrm{Mpa}, \mathrm{t}=20^{\circ} \mathrm{C}$,contents $=2.5 \mathrm{~kg}$.
Calculate the final equilibrium pressure, and the amount of heat transferred to the surroundings. If the vessel had been perfectly insulated, calculate the final temperature and pressure which would have been reached.
6. a) What is an air standard cycles and why such cycles are conceived? What are
the advantages of Helium as the working substance in the cycle?
b) For the same maximum pressure and temperature and same heat rejection which is cycle is most efficient? Otto, Diesel or Dual? Explain with P-V and T-S diagrams.

Code: 1G534

II B.Tech. I Semester Supplementary Examinations May/June 2016

Machine Drawing

(Mechanical Engineering)
Max. Marks: 70
Time: 04 Hours

Section-I
Answer any Two of the following

$$
2 \times 4=8 M
$$

1 Sketch the conventional representation of the following materials
(a) External Screw Threads
(b) Internal Screw Threads

2 How do you diagrammatically represent the following
(a) Half section
(b) Local Section
3. Through sketches, illustrate the method of representing a rivet head having snap head. (Consider $\mathrm{d}=25 \mathrm{~mm}$)

Section-II
 Answer any two of the following

4. Sketch any two types of cap screw with 25 mm diameter?
5. Draw the sectional view from the front of a cotter joint with sleeve used to connect two rods of 50 mm diameter each?
6. Draw
(a) sectional view from the front and
(b) the view from above of double riveted chain lap joint to join plates of thickness 10 mm .
7. The details of the air cock are shown in Figure 1, Assemble the parts and draw (i) Half sectional view from the front
(ii) View from the right and
(iii) View from the above

Fig.No.1: Air Cock

