| Hall Tic   | ket Number :                                                                                                                        |      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| Code :     |                                                                                                                                     | R-13 |
|            | B.Tech. I Semester Supplementary Examinations May/June 2016                                                                         |      |
|            | Mathematics-II                                                                                                                      |      |
| Max        | ( Common to CE & ME )<br>c. Marks: 70 Time: 03 Hour                                                                                 | S    |
|            | Answer any five questions                                                                                                           |      |
|            | All Questions carry equal marks (14 Marks each)                                                                                     |      |
| 1. a)      | Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ . | 7M   |
| b)         | Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ and hence |      |
|            | find its inverse.                                                                                                                   | 7M   |
| 2. a)      | Given that $f(x) = \begin{cases} -f, -f < x < 0 \\ x, 0 < x < f \end{cases}$ . Find the Fourier series for                          |      |
|            | $f(x)$ . Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = \frac{f^2}{8}$ .                | 9M   |
| b)         | Obtain the half range sine series for $f(x) = e^x$ in $0 < x < 1$ .                                                                 | 5M   |
| 3. a)      | Derive the partial differential equation by eliminating the constants from the equation $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ .  |      |
| <b>b</b> ) | u v                                                                                                                                 | 4M   |
| b)         | A tightly stretched string with fixed end points $x = 0$ and $x = L$ is initially in a                                              |      |
|            | position given by $y = y_0 \sin^3\left(\frac{fx}{L}\right)$ if it is released from rest from this position,                         |      |
|            | find the displacement $y(x,t)$ .                                                                                                    | 10M  |
| 4. a)      | Determine the root of $x e^{x} - 2 = 0$ by method of false position.                                                                | 7M   |
| b)         | Using Lagrange's formula, express the function $\frac{x^2 + x - 3}{x^3 - 2x^2 - x + 2}$ as a sum of                                 |      |
| _ 、        | partial fractions.                                                                                                                  | 7M   |
| 5. a)      | Find the value of $y at x = 0.1$ by Picard's method, given that                                                                     |      |
|            | $\frac{dy}{dx} = \frac{y - x}{y + x},  y(0) = 1.$                                                                                   | 7M   |
| b)         | Apply Runge-Kutta method of $4^{th}$ order, to find an approximate value of y                                                       |      |
|            | when $x = 0.2$ given that $\frac{dy}{dx} = x + y$ , $y(0) = 1$ .                                                                    | 7M   |

7M

7M

6. a) Determine  $\frac{dy}{dx}$  at x = 2 from the data below:

b) Use Simpson's 1/3<sup>rd</sup> rule to find  $\int_{0}^{0.6} e^{-x^2} dx$  by taking seven coordinates.

7. a) Show that for 
$$f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, z \neq 0 \\ 0 \\ z = 0 \end{cases}$$
 the Cauchy-Riemann equations are

satisfied at the origin but the derivative of f(z) at origin does not exist. 7M

b) Find the analytic function 
$$f(z) = u + iv$$
 where  $u = \frac{\sin 2x}{(\cosh 2y - \cos 2x)}$ . 7M

8. a) Use Cauchy's integral formula to evaluate  $\int_C \frac{e^{2z}}{(z+1)^4} dz$  where *C* is the circle |z| = 2.

b) Find the Laurent series of 
$$f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$$
, for (i)  $1 < |z| < 4$  (ii)  $|z| > 4$ .  
7M

\*\*\*

| Hall Ticket Number : |  |  |  |  |  |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|--|--|--|--|--|
|----------------------|--|--|--|--|--|--|--|--|--|--|--|

## Code : 1G237

II B.Tech. I Semester Supplementary Examinations May/June 2016

# Electrical Engineering and Electronics Engineering

(Mechanical Engineering)

## Max. Marks: 70

## Time: 03 Hours

R-11/R-13

8M

6M

7M

10M

4M

8M

6M

Answer *any five* questions All Questions carry equal marks (14 Marks each)

1. a) In the circuit of Fig.1 there are eight circuit elements. Find  $V_{R2}$  (the voltage across R2) and the voltage labeled  $V_x$ .



b) Determine the Total resistance of the network between AB terminals shown in Fig 2.



| 2. | a) | Derive emf equation for DC Generator.                                                                                                            | 8M |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | b) | An 8 Pole,Lap Wound armature rotated at 350 rpm is required to generate 260V.The useful magnetic flux per pole is 0.05Wb.if the armature has 120 |    |
|    |    | slots. Calculate the number of conductors per slot.                                                                                              | 6M |
| 3. | a) | Explain losses in the single phase transformer. Derive the formula for efficiency.                                                               | 9M |
|    | b) | In a 50KVA transformer, the iron loss is 500W and full load copper loss is                                                                       |    |

- 800W.Find the efficiency at full load at 0.8 p.f. lagging.5M4. a) Explain the Principle of operation of Alternator.7M
  - b) Explain the principle of operation of Three phase Induction Motor.
- 5. a) Explain the operation of PN junction diode with its VI characteristics.
- b) Explain diode applications.6. a) Explain working of PNP & NPN transistors
- b) Explain SCR Characteristics and its applications.
- Explain the concept of Induction Heating and also discuss about various Industrial Applications of Induction Heating.
  14M
- 8. Explain the working and function of each block of CRO with the help of neat diagram 14M

Page **1** of **1** 

| Hall Ticket Number : |  |  |  |  |  |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|--|--|--|--|--|
|----------------------|--|--|--|--|--|--|--|--|--|--|--|

## Code : 1G531

Max. Marks: 70

II B.Tech. I Semester Supplementary Examinations May/June 2016

## **Mechanics of Solids**

(Mechanical Engineering)

Time: 03 Hours

R-11/R-13

Answer any five questions All Questions carry equal marks (14 Marks each)

1. a) Explain the following :

(i) Stress ii) Strain and iii) Bulk modulus

- b) A metal bar 5 cm x 5 cm section is subjected to an axial compressive load of 500 kN. The contraction on 20 cm gauge length is found to be 0.5 mm and the increase in thickness is 0.045 mm. Find the value of Young's modulus and Poisson's ratio.
- 2. a) Explain the Shear force and Bending moment diagrams.
  - b) Draw the complete shear force and bending moment diagrams for the beam shown in Figure 1, with all salient points.



10M

- 3. a) What do you mean by simple bending? State the assumptions in the theory of simple bending.
  - b) A rectangular beam 80 mm x 40 mm is 3 m long and simply supported at its ends. It carries a load of 1 kN at the mid span. Determine the maximum bending stress induced in the beam.
- 4. A beam simply supported over a span of 2 m carries a UDL of 20 kN/m over its entire length. The cross-section of the beam is a T-section having flange 125 x 25 mm and web 25 x 175 mm. Draw the shear stress distribution over the depth of the beam section.
- Derive the torsion formula applied to circular shafts. 5. a)
  - b) What diameter of the shaft will be required to transmit 80 kW at 60 rpm, if the maximum torque is 30 percent greater than the mean and the limit of torsional stress is to be 56 Mpa. If the modulus of rigidity is 84 Gpa, what is the maximum angle of twist in 3 m length?
- 6. A 2 m long cantilever made of steel tube of section 150 mm external diameter and 100 mm thick is loaded as shown in Figure 2. If E = 200 GN/m<sup>2</sup> then calculate
  - (i) The value of 'W' so that the maximum bending stress is 150 MN/m<sup>2</sup>
  - (ii) The maximum deflection of the loading

C 0.5 m 1.5 m

8M

4M

6M

6M

8M

14M

7M

7M

- 7. A bar of length 4 m when used as a simply supported beam and subjected to a uniformly distributed load of 30 kN/m over the whole span, deflects 1.5 cm at the center. Determine the crippling loads when it is used as a column with the following end conditions.
  - (i) Both ends pin jointed
  - (ii) One end fixed and the other hinged
  - (iii) Both ends hinged

14M 4M

- 8. a) Explain stresses in thin cylindrical shells.
  - b) A bronze sleeve of 20 cm internal diameter and 6 mm thick is pressed over a steel liner 20 cm external diameter and 1.6 cm thick, with a force fit allowance of 0.008 cm on diameter. Treating both as thin cylinders find (i) the radial pressure at the common surface (ii) the hoop stress and (iii) the percentage of the fit allowance met by the sleeve and liner.

\*\*\*

|      |     |                                                                                                                                        |                                                 |                                         |                                             |                                      | 1                                        |                                           |                                      | 1                               | 1                                 |                             | ٦                          |                            |                           |                            |                    |           |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------|-----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|--------------------|-----------|
| Hall | Tic | ket Number :                                                                                                                           |                                                 |                                         |                                             |                                      |                                          |                                           |                                      |                                 |                                   |                             |                            |                            | Г                         | <b>.</b> -                 |                    |           |
| Code | : 1 | G532                                                                                                                                   |                                                 |                                         |                                             |                                      |                                          |                                           |                                      |                                 |                                   |                             |                            |                            |                           | R-1                        | 1/R                | -13       |
|      |     | 3.Tech. I Sem                                                                                                                          |                                                 |                                         | llur                                        | gy 8                                 | ento<br><b>&amp; Mo</b><br><i>ical E</i> | ater                                      | ial S                                | Scie                            |                                   |                             | ay                         |                            |                           |                            |                    |           |
| M    | ax. | Marks: 70<br>All G                                                                                                                     | Ques                                            |                                         |                                             | ry e                                 | ny fi <sup>.</sup><br>qual<br>*****      | ma                                        |                                      |                                 |                                   | ead                         | ch                         |                            | e:                        | 03 H                       | ours               |           |
| 1.   | ,   | Explain in deta<br>Differentiate b                                                                                                     |                                                 |                                         | -                                           | •                                    |                                          |                                           |                                      |                                 |                                   |                             |                            |                            |                           |                            |                    | 9M<br>5M  |
| 2.   | ,   | Write down the<br>What is the nee                                                                                                      |                                                 |                                         |                                             |                                      |                                          | •                                         |                                      |                                 | -                                 |                             |                            | -                          |                           |                            | ۱?                 | 10M<br>4M |
| 3.   | a)  | Metal A melts<br>A and B does<br>metal A in B a<br>with 40 % A a<br>phase diagram<br>(i) temperatu<br>solidificati<br>(ii) for the sam | not f<br>ind E<br>ind 6<br>n for<br>ire a<br>on | orm<br>3 in A<br>0% E<br>the a<br>at wh | any o<br>t is n<br>3. As<br>Illoy s<br>nich | comp<br>eglig<br>sum<br>serie<br>70% | ible.<br>e tha<br>s and<br>of <i>i</i>   | d or i<br>The<br>It the<br>d find<br>A an | ntern<br>meta<br>liqui<br>l:<br>d 30 | nedia<br>al pai<br>idus<br>0% c | ate pl<br>ir for<br>lines<br>of B | hase<br>ms a<br>are<br>star | e. S<br>a ei<br>str<br>str | Solid s<br>utecti<br>aight | sol<br>ic a<br>t. [<br>cc | lubility<br>at 300<br>Draw | y of<br>0°C<br>the | 9M        |
|      | b)  | What is coring                                                                                                                         | ? Ho                                            | w is                                    | it hai                                      | ndlec                                | 1?                                       |                                           |                                      |                                 |                                   |                             |                            |                            |                           |                            |                    | 5M        |
| 4.   | a)  | What is S.G. I                                                                                                                         | ron?                                            | Wha                                     | t are                                       | its a                                | pplic                                    | ation                                     | s?                                   |                                 |                                   |                             |                            |                            |                           |                            |                    | 7M        |
|      | b)  | What is the e<br>Hadfield steel?                                                                                                       |                                                 |                                         | -                                           |                                      |                                          |                                           |                                      | -                               |                                   |                             | in                         | stee                       | el?                       | What                       | t is               | 7M        |
| 5.   |     | Explain in deta<br>cooling curves<br>a typical euted                                                                                   | of a                                            | nnea                                    | ling,                                       |                                      |                                          |                                           |                                      |                                 |                                   |                             |                            | •                          |                           | •                          |                    | 14M       |
| 6.   | a)  | Write down the                                                                                                                         | e pro                                           | perti                                   | es ar                                       | nd us                                | ses of                                   | f cop                                     | per.                                 |                                 |                                   |                             |                            |                            |                           |                            |                    | 7M        |
|      | b)  | Write notes or                                                                                                                         | n Bra                                           | sses                                    |                                             |                                      |                                          |                                           |                                      |                                 |                                   |                             |                            |                            |                           |                            |                    | 7M        |
| 7.   |     | Write notes on<br>(i) Bullet Pr<br>(ii) Cermet<br>(iii) Carbon                                                                         | roof (<br>s                                     |                                         |                                             |                                      |                                          |                                           |                                      |                                 |                                   |                             |                            |                            |                           |                            |                    | 14M       |
| 8.   |     | Explain the Ele                                                                                                                        | ectric                                          | al pr                                   | oces                                        | ses o                                | of ste                                   | el m                                      | aking                                | g.                              |                                   |                             |                            |                            |                           |                            |                    | 14M       |

| Hall Ti | icket Number :                                                                                 |                                     |                             |                         |                        |                        |                                |                            |                |               |                 |                   |                |                      |             |
|---------|------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|-------------------------|------------------------|------------------------|--------------------------------|----------------------------|----------------|---------------|-----------------|-------------------|----------------|----------------------|-------------|
| Code    | : 1G533                                                                                        | <u>ı l</u>                          |                             | I                       | J                      | 1                      | 1                              | 1                          | I              | .L            |                 | L                 |                | <b>R-1</b> 1         | I / R-13    |
| II B    | .Tech. I-Sen                                                                                   | neste                               | ∋r S                        | Tł                      | nerr                   | noc                    | itary<br><b>lync</b><br>' Engi | amio                       | CS             | nati          | ions            | Ма                | y/Ju           | une 20               | )16         |
| Max     | k. Marks: 70                                                                                   |                                     |                             | ( 171                   | ecna                   | inica                  | Liigi                          | neen                       | ng)            |               |                 | т                 | ime:           | 03 Ho                | urs         |
|         | A                                                                                              | ll Que                              | estio                       |                         |                        |                        | five o<br>al ma                | •                          |                |               | s eac           | :h)               |                |                      |             |
| 1. a)   | Show that work                                                                                 | is a l                              | Path                        | n funo                  | ction                  | and                    | not a                          | a prop                     | perty          |               |                 |                   |                |                      | 4M          |
| b)      | A gas expands<br>KPa and V is t<br>and the final pu<br>back to its ori                         | the sp<br>ressui                    | pecif<br>re is              | fic vo<br>500           | olum<br>) KPa          | e .Th<br>a. Th         | ne ini<br>ne ga                | tial p<br>s is i           | oress<br>then  | ure o<br>heat | of the<br>ed a  | e gas<br>t con    | is 1<br>stant  | 000KPa<br>volum      | a<br>e      |
|         | process .Also s                                                                                | sketch                              | the                         | proc                    | cess                   | on P                   | -V co                          | oordii                     | nates          | 6             |                 |                   |                |                      | 10M         |
| 2. a)   | Derive the relat                                                                               | tion be                             | etwe                        | en C                    | Centi                  | grad                   | e sca                          | le ar                      | nd Fa          | hren          | heit            | scale             | •              |                      | 7M          |
| b)      | A refrigerant v<br>KJ/Kg enthalpy<br>15°C and leave<br>of refrigerant. T                       | y and<br>es 20º                     | lea<br>C. O <sup>0</sup> C. | ives<br>Calci           | with<br>Jate           | 65<br>the              | KJ/kę<br>mase                  | g ent                      | halp           | y. Č          | oolin           | g wa              | ter e          | nters a              | at          |
| 3. a)   | Explain the two                                                                                |                                     |                             |                         |                        | -                      |                                | of Th                      | ermo           | odyna         | amics           | 6                 |                |                      | 6M          |
| ,       | Three Carnot H<br>working with sa<br>2400 kW and h                                             | Heat E<br>ame th<br>neat re         | Engi<br>hern                | nes l<br>nal e          | HE1,<br>fficie         | , HE2<br>ency.         | 2, HE<br>The                   | 3 ar<br>heat               | e coi<br>supj  | nnec<br>olied | ted ii<br>to th | n seri<br>le ent  | ire s          | ystem i              | s<br>e      |
|         | for each engine                                                                                |                                     |                             |                         |                        |                        |                                |                            |                |               |                 |                   |                |                      | 8M          |
| 4. a)   | Water flows thr<br>rise from 35°C<br>the water chang<br>as constant volu                       | to 37º<br>ge in p                   | C.If                        | there<br>ing th         | ə is r                 | no he                  | eat tra                        | ansfe                      | r, ho          | w mu          | uch d           | loes t            | he er          | ntropy c             | of          |
| b)      | Derive Maxwell                                                                                 | •                                   |                             |                         | ded                    | uce t                  | wo "                           | [ds"                       | equa           | tions         | :               |                   |                |                      | 10M         |
| ,       | Describe the pr                                                                                |                                     |                             |                         |                        |                        |                                |                            | oquu           |               |                 |                   |                |                      | 4M          |
| ,       | Two boilers one<br>equal quantities<br>main pipe is 20<br>350°C and in th<br>the other boiler. | e with<br>of ste<br>D bar.<br>ne ma | sup<br>eam<br>The           | oerh<br>intoa<br>eten   | eate<br>a cor<br>npera | r and<br>nmoi<br>ature | d othe<br>n mai<br>of st       | er wit<br>n pip<br>team    | e. Th<br>from  | e pre<br>boil | essur<br>er w   | e in th<br>ith su | ne bo<br>per h | ilers an<br>neater i | g<br>d<br>s |
| 6. a)   | Show that for a                                                                                |                                     | eal c                       | nas C                   | C₀ – (                 | Cv =F                  | 2                              |                            |                |               |                 |                   |                |                      | 6M          |
|         | 0.5 kg of air is                                                                               | s com                               | pres                        | ssed                    | reve                   | ersibl                 | y an                           |                            |                | •             |                 |                   |                |                      | 0           |
|         | 0.4MPa, and is Calculate work                                                                  |                                     |                             | •                       |                        |                        |                                | •                          |                |               |                 | e orig            | jinai          | volume               | e.<br>8M    |
| 7.      | Two vessels Ad<br>opened to allow<br>27°C.Before mix<br>Vessel A : P=1.4                       | w the<br>king th<br>5Mpa            | con<br>ne fo<br>,t= 5       | tents<br>Ilowii<br>50ºC | to r<br>ng in<br>,con  | nix a<br>formatents    | and a<br>ation<br>= 0.5        | ichiev<br>is kno<br>5 kg r | ve ar<br>own a | n equ         | uilibri         | um te             | empe           |                      |             |
|         | Vessel B : P=0.<br>Calculate the fin<br>surroundings. I<br>temperature and                     | nal eq<br>If the                    | uilib<br>ves                | rium<br>ssel            | pres<br>had            | sure<br>bee            | , and<br>n pe                  | the a                      | ly in          | sulat         | ed, (           |                   |                |                      |             |
| 8. a)   | What is an air the advantages                                                                  | stand                               | lard                        | cycl                    | es ai                  | nd w                   | hy s                           | uch c                      | ycle           | s are         | e con           |                   | d? V           | Vhat ar              |             |
| b)      | For the same m                                                                                 | naximu                              | um p                        | oress                   | sure a                 | and t                  | empe                           | eratui                     | e an           | d sai         | me h            | eat re            | •              |                      | h           |

is cycle is most efficient? Otto, Diesel or Dual? Explain with P-V and T-S diagrams. 8M

| Hall Ticket Number : |  |  |  |  |  |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|--|--|--|--|--|
|----------------------|--|--|--|--|--|--|--|--|--|--|--|

## Code : 1G534

II B.Tech. I Semester Supplementary Examinations May/June 2016

## Machine Drawina

(Mechanical Engineering)

Max. Marks: 70

\*\*\*\*

## Time: 04 Hours

## Section-I

## Answer any Two of the following

 $2 \times 4 = 8M$ 

R-11/R-13

- Sketch the conventional representation of the following materials 1
  - (a) External Screw Threads
  - (b) Internal Screw Threads
- 2 How do you diagrammatically represent the following
  - (a) Half section
  - (b) Local Section
- 3. Through sketches, illustrate the method of representing a rivet head having snap head. (Consider d=25mm)

#### Section-II Answer any two of the following 2 x 10=20M

- 4. Sketch any two types of cap screw with 25mm diameter?
- 5. Draw the sectional view from the front of a cotter joint with sleeve used to connect two rods of 50mm diameter each?
- 6. Draw
- (a) sectional view from the front and
- (b) the view from above of double riveted chain lap joint to join plates of thickness 10mm.

#### Section-III Answer the following question

- 7. The details of the air cock are shown in Figure 1, Assemble the parts and draw
  - (i) Half sectional view from the front
  - (ii) View from the right and
  - (iii) View from the above



Parts list

| Part No. | Name      | Matl     | Qty |
|----------|-----------|----------|-----|
| 1        | Body      | CI       | 1   |
| 2        | Plug      | CI       | 1   |
| 3        | Screw cap | MS       | 1   |
| 4        | Spring    | Spring S | 1   |
| 5        | Lever     | FS       | 4   |





# Fig.No.1: Air Cock