## Code: 1G236

## Answer any five questions

All Questions carry equal marks ( 14 Marks each )
$* * * * * * * * *$

1. a) Determine the equivalent resistance between $A$ and $B$ of the network shown below.

b) Use source transformation to simplify the network to a single voltage source and single resistance.

2. a) Using mesh analysis find current through 4 resistor.

b) Determine the current in the 2 resistor for the circuit shown below, by using nodal analysis.

3. a) Find peak factor and form factor of following waveform.

b) What are the advantages of Sinusoidal waveform as AC voltage waveform?
4. a) Find current I for the circuit shown below.

b) Design a series RLC circuit that will have an impedance of 10 at the resonant frequency of $\mathrm{w}_{0}=50 \mathrm{rad} / \mathrm{sec}$ and a quality factor of 80 . Find the B.W and half power frequencies.
5. a) What are advantages of three phase system over single phase system?
b) A 3-phase 4-wire 400 V system supplies a balanced Y load having impedances of $20 \angle 60^{\circ} \Omega$ in each phase. Find the line currents and draw phasor diagram. What is the current flow through neutral wire.
6. a) What is significance of DOT convention in coupled circuit? Explain
b) Determine the voltage $\mathrm{V}_{0}$ in the circuit shown below.

7. a) State and prove Maximum power transfer theorem.
b) Find the current through 'b-e' using Norton's theorem in the circuit shown below.

8. a) State and explain Milliman's theorem.
b) Verify Reciprocity theorem by finding current through 4 resistor.


## Code: 1G331

|| B.Tech. I Semester Supplementary Examinations Nov/Dec 2017
Electronic Circuits
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours

Answer any five questions<br>All Questions carry equal marks ( 14 Marks each )<br>$* * * * * * * * *$

1. a) Using the $h$-parameter model, derive the expressions for current gain $A_{1}$, input
resistance $R_{i}$, voltage gain $A_{v}$ and output resistance $R_{o}$ of a $C E$ amplifier. $7 M$
b) A transistor in CB configuration is driven by a voltage source $\mathrm{V}_{\mathrm{S}}$ of internal resistance $R_{s}=800$. The load impedance is resistor $R_{L}=2000$. The hparameters are $H_{i b}=22, h_{r b}=3 \times 10^{-4}, h_{f b}=-0.98$ and $h_{\text {ob }}=0.5 \mathrm{~A} / \mathrm{V}$. Compute the current gain $A_{l}$, input impedance $R_{i}$, voltage gain $A_{v}$, overall voltage gain $A_{v s}$, overall current gain $A_{I S}$ and output impedance $Z_{0}$.
2. a) Draw the circuit of a two-stage RC coupled amplifier, draw its small signal
equivalent circuit for one stage, draw its simplified equivalent circuit and derive
the expression for mid band current gain $A_{I M}$ and voltage gain $A_{v m} 7 M$
b) Explain cascode amplifier operation with neat diagrams and mention its uses. 7M
3. a) Derive the expression for short circuit current gain $A_{I S}$ of a CE amplifier. Define
$f_{\beta}$ and $f_{T}$.
b) The following low frequency parameters are known for a given transistor at room temperature $\left(300^{\circ} \mathrm{K}\right)$ at $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}}=8$ volts: $\mathrm{h}_{\mathrm{ie}}=500$ $h_{\text {oe }}=2 \times 10^{-4} \mathrm{~S}, \mathrm{~h}_{\mathrm{fe}}=100$ and $\mathrm{h}_{\mathrm{re}}=10^{-4}$. At the same operating point, $\mathrm{f}_{\mathrm{T}}=50 \mathrm{MHz}$ and $\mathrm{C}_{\mathrm{ob}}\left(\mathrm{C}_{\mathrm{c}}\right)=3 \mathrm{pF}$. Calculate the values of hybrid- parameters.
b) When the negative feedback is applied to an amplifier of gain 100, the overall gain falls to 50 . Calculate (i) the feedback factor $\beta$ (ii) if the same feedback factor maintained, the value of the amplifier gains required if the overall gain is to be 75 .
b) A Wein bridge oscillator is used to operate at $f_{0}=10 \mathrm{KHz}$. If the value of $R$ is 100 K , find the value of the capacitor C .
4. a) Explain class A power amplifier working with neat sketches and derive the
expression for conversion efficiency.
b) Explain class B push-pull amplifier operation with neat diagrams and derive the expression for collector circuit efficiency. ..... 7M
5. a) Explain the operation and frequency response of double tuned amplifier. ..... 7M
b) What is stagger tuned amplifier? Explain its working. ..... 7M
6. a) Draw shunt voltage regulator and explain its working. ..... 7M
b) Explain 7805 IC voltage regulator with neat diagrams. ..... 7M

## Code: 1GC32

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

## Engineering Mathematics

## ( Common to EEE \& ECE )

Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks ( 14 Marks each )

1. a) Find the Rank of the matrix by normal form

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 3 & 2 \\
3 & 2 & 1 & 3 \\
6 & 8 & 7 & 5
\end{array}\right]
$$

b) I alue: : $\left\lfloor 66^{8}\right.$ at the $\left.{ }^{j}\right\rfloor$ ti nvestigate the $v_{i} \quad s$ of $a_{2}$ and $b$, so th ${ }^{2}$ equa ons $x+y+z=6, \begin{aligned} & x+2 y+3 z=10, \\ & x+2 y+a z=b\end{aligned}$ have i) no solution ii) a urique solution iii) an infinite number of solutions
2. a) Find a real root of the equation $x \log _{10} x=1.2$ by Regular - falsi method correct to four decimal places
b) Using Taylor's series method, compute the value of y at $\mathrm{x}=0.2$ from $\frac{d y}{d x}=x+y$; $y(0)=1$
3. a) Fit a straight line $y=a+b x$ to the data by the method of least squares

| $x$ | 0 | 1 | 3 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 1 | 3 | 2 | 5 | 4 |

b) Fit a least square geometric curve the data

| x | 1 | 2 | 3 | 4 | 5 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0.5 | 2 | 4.5 | 8 | 12.5 |  |
| $y_{1}$ | 0.5 | 2 | 4.5 | 8 | 12.5 | eliminating the arbitrary functions $f$ and $g$ |

b) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 \mathrm{e}^{-}$ 3x
5. a) Find a Fourier series to $f(x)=x-x^{2}$ in $(-\pi, \pi)$
b) Expand the function as the Fourier series of sine terms

$$
\begin{aligned}
f(x) & =\frac{1}{4}-x ; \text { if } 0 \leq x \leq \frac{1}{2} \\
& =x-\frac{3}{4} ; \text { if } \frac{1}{2} \leq x \leq 1
\end{aligned}
$$

6. Find the Fourier transform of $f(x)=1-x^{2}, 1 \times 1 \leq 1$

$$
=0 \quad, 1 \times 1>1
$$

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$
7. a) Calculate mean, median and mode of the following data relating to weight of 120 articles

| Weight(in gm) | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of articles | 14 | 17 | 22 | 26 | 23 | 18 |

b) The probability density function of a variable $X$ is

8. a) The probability that a pen manufactured by a company will be defective is $\frac{1}{10}$. If 12 such pens are manufactured, find the probability that
i. exactly 2 will be defective
ii. atleast 2 will be defective
iii. none will be defective
b) For a normally distributed $v^{2}$, with mean 1 and stid deviation 3, Find the probability that (i) $3.43 \leq x \leq 6.19$ (ii) $-1.43 \leq x \leq 6.19$

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

## Random Variables and Random Processes

(Electronics and Communication Engineering)

Answer any five questions<br>All Questions carry equal marks ( 14 Marks each )

1. a) State and Prove Total Probability Theorem ..... 7M
b) Explain about the distribution and density functions of exponential RV with neat sketches. ..... 7M
2. a) State and prove the properties of variance of a random variable. ..... 7M
b) Find the characteristic function $\varnothing_{x}(\omega)$ for an exponential random variable $X$. ..... 7M
3. a) State and Prove Central Theorem ..... 7M
b) Define joint probability density function. list out its properties. ..... 7M
4. a) State and prove the properties of power spectral density. ..... 7M
b) Explain Spectral Characteristics of System Response ..... 7M
5. a) Discuss about Noise Bandwidth ..... 7M
b) Explain in detail about Band-Limited and Narrowband Processes. ..... 7M
6. Explain clearly about Stationarity and independence concept with examples. ..... 14M
7. a) Derive an expression that relates autocorrelation function and auto covariance function. ..... 7M
b) A random process is defined as $X(t)=A$ coswt, where $w$ is constant and $A$ is a uniform random variable over $(0,1)$. Find the autocorrelation and covariance of $X(t)$. ..... 7M
8. a) List all the properties of auto-correlation function. ..... 7M
b) Prove relationship between Cross-Power Spectrum and Cross-Correlation Function ..... 7M
