\square

Code: 4G235

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Electrical Circuit Theory

(Electronics and Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1 a) Find the total equivalent capacitance, total energy stored if the applied voltage is 100V for the circuit as shown in Fig.

b) Write and solve the equation for mesh current in network.

OR
2. a) Using source transformation, reduce the network between A and B into an equivalent voltage source.

b) Find the power supplied by 12 V source as shown in fig. below

UNIT-II

3. a) Find the form factor for the following waveform.

b) In below fig $R_{1}=3$ ohms, $R_{2}=10$ ohms, and $-j X_{c}=-j 8$ ohms. Find I_{1}, I_{2} and I. also obtain $Z_{\text {eq }}$ across a-b.

4. a) The full wave rectified sine wave shown in below fig. has a delay angle of 60°. Calculate $\mathrm{V}_{\text {avg }}$ and $\mathrm{V}_{\text {rms }}$.

b) What should be the value of C such that the input power factor is unity for any frequency of the source?

UNIT-III

5. a) Derive the expression for coefficient coupling between pair of magnetically coupled coils.
b) Solve for the currents I_{1} and I_{2} in the circuit shown in Fig. Also, find the ratio of V_{2} / V_{1}.

OR

6. a) In the parallel resonant circuit, determine the resonance frequency, dynamic resistance and bandwidth for the circuit shown in Fig. 3.

b) In a series RLC circuit $\mathrm{R}=1 \mathrm{~K}, \mathrm{~L}-120 \mathrm{mH}$, and $\mathrm{c}=12 \mu \mu \mathrm{~F}$. If a voltage of 200 V is applied across the combination, determine
i) Resonant frequency
ii) Q factor
iii) Half Power Frequencies
iv) Band width and
v) The voltage across the inductance and the capacitance

UNIT-IV

7. a) A three phase balanced system supplies 110 V to a delta connected load whose phase impedances are equal to $(3.54+\mathrm{j} 3.54)$ ohm. Determine the line currents and draw the phasor diagram.
b) A star connected alternator supplies a delta connected load. The impedance of each branch is $(6+j 8)$ ohm. The line voltage is 400 V . Obtain the current in phase of the load. Also find the current in each phase of the alternator. What is the power drawn by the load and its power factor? Determine the reactive power of the load.

OR

8. a) The phase impedance of a delta connected load is $(15+j 20)$ ohms. What is the line current if the applied line voltage is 220 V ? Obtain the amount of power consumed per phase. What is the phasor sum of the three line currents?
b) A star-connected alternator has $231 \mathrm{~V} / \mathrm{Ph}$. It supplies a set of lighting loads at phase R, having phase impedance of $40 \angle 0^{\circ}$ ohms, a capacitive load of $10 \angle-60^{\circ}$ ohm at phase Y and an inductive load of $5 \angle 45^{\circ}$ ohm at phase B. The loads are connected in delta. Obtain the phase currents, line currents and line voltages.

UNIT-V

9. a) Explain the steps to apply Thevenin's theorem and draw the Thevenin's equivalent circuit.
b) Determine the current flowing through the 5ohms resistor in the circuit shown in Fig. by using Norton's theorem.

OR

10. a) Find the current I in the circuit shown in Fig. using superposition theorem.

b) Verify Tellegen's theorem for the network shown in Fig

Code: 4GC32

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Engineering Mathematics

(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Reduce the following matrix into its normal form and hence find its rank

$$
A=\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

b) Test for consistency and solve

$$
5 x+3 y+7 z=4, \quad 3 x+26 y+2 z=9, \quad 7 x+2 y+10 z=5
$$

2. a) Solve $2 x-y+3 z=9, x+y+z=6, x-y+z=2$ by Gauss elimination method.
b) Verify Caley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and find its inverse.

UNIT-II

3. a) Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson method correct to four decimal places.
b) Apply Runge-Kutta method to find an approximate value of y for $x=0.2$ in steps of 0.1 if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$, where $x=0$.

OR

4. a) Find a root of the equation $x^{3}-2 x-5=0$, using the Bisection method correct to three decimal places.
b) Find by Taylor's series method the value of y at $x=0.1$ and $x=0.2$ to five decimal places from $\frac{d y}{d x}=x^{2} y-1, \quad y(0)=1$.

UNIT-III

5. a) Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and backward interpolation formula:

x	20	25	30	35	40	45
$f(x)$	354	332	291	260	231	204

b) Use Simpson's $(1 / 3) r d$ rule and Simpson's(3/8)th rule to estimate $\int_{0}^{6} \frac{d x}{\left(1+x^{2}\right)}$
6. a) Use Lagrange's Interpolation formula to estimate $f(10)$ from the following table:

x	5	6	9	11
$f(x)$	12	13	14	16

b) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$ from the following table:

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

UNIT-IV

7. a) Fit a second degree parabola to the following data by the method of least squares:

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from

$$
\text { (i) } z=a x+b y+a^{2}+b^{2} \text { and } \quad(i i) z=f(x+a y)+g(x-a y)
$$

OR

8. a) Fit a curve $y=a e^{b x}$ to the following data by the method of least squares:

x	1	2	3	4
y	1.65	2.7	4.5	7.35

b) Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$ by variable separable method.

UNIT-V

9. a) Obtain the Fourier series for the function $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$. Hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \cdots=\frac{\pi^{2}}{12}$.
b) Find the Fourier sine transform of the function $f(x)=\frac{e^{-a x}}{x}, a>0$.

OR

10. a) Find the half-range Cosine series for the function $f(x)=(x-1)^{2}$ in the interval $(0,1)$. Hence show that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \cdots=\frac{\pi^{2}}{6}$
b) Show that $e^{-\left(x^{2} / 2\right)}$ is a self-reciprocal with respect to Fourier Transform.
\square
Code: 4G333

R-14

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Signals \& Systems

(Electronics \& Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define: and Sk_{k} etch
i. $\delta(t+z)$ ii. $\mu(-t+1)$ iii. Signum function
b)

Find T.F.S.

OR

2. a)

Find Enpoutial Fourier Series and Draw the spectrum
b) $\mathrm{Pl}^{\text {id Enpou }}$.ital Foujier St and Dr วt for $x\left(r_{2}\right)=\{1, \dot{1}, 3,4\}$
i. $x(2 n)$ ii. $x(0.5 n)$ iii. $x(n-2)$

UNIT-II

3. a) State and prove Frequency convolution property.
b)

Find ${ }^{x(w)}$

OR

4. Find Fourier Transformation using Fourier Properties.
i.

ii.

5. a) \quad Tt $L_{\text {est for }} L_{\text {inearity, }}^{\text {UNIT-III }}$ $\begin{array}{lll}\text { i. } y(t)=[x(t)]^{2} & \text { ii. } y(t)=\left.\log _{10}\right|_{x(t) \mid} & \text { iii. } y(t)=\sin a t\end{array} 6 \mathrm{M}$
b) Explain Paley-Weiner Criterion.

OR

6. a) $\mathrm{T}_{\text {est for }}{ }^{\text {Linearity, Time ve }}{ }^{\text {riar }}{ }_{\text {Ice and }}$ ausality for i. $y(t)=x(\alpha t) \quad$ if i. $\alpha<1 \quad$ ii. $\alpha>1$
b) Derive the condition for Distortion less Transmission and draw the magnitude \& phase characteristics.

UNIT-IV

7. a) Write Differences between auto and cross correlation and state any four properties of auto correlation.
b)

Find autocorrelation.

OR

 energy.
b) Define sampling theorem for time $\lim _{\text {ited si? }}$ ynal and find the Nyquist rate for
i. rect 300 t ii. $10 \sin 10 \pi t \cos 300 \pi t$

UNIT-V

9. a) ${ }_{F(S)}=\frac{10}{s(s+10)}$. find unit ramp response of the system.

OR

10. a) State and prove initial and final value theorem using L.T.
 i. $x(x)$
Find $x(Z)$ and show Riegion of Convergence.
ii. $x(n)=$
$u(n)$
