						·]			1				
Hall Ticket Number :										<u></u>					-		
Code : 1GC34															R	-11/R	-13
II B.Tech. I Semester Supplementary Examinations May/June 2016																	
Environmental Science																	
(Common to ECE & IT) Max. Marks: 70 Time: 03 Hours													:				
	•			А	nsw	er a	ıny fi	ve c	luest	ions			-				•
All Questions carry equal marks (14 Marks each)																	
1. Define environment. Explain the components and scope of environmental studies. 14												14M					
2. a) Write notes on effect of mining on forest and tribal people.											7M						
	b) Justify the necessity of developing non-conventional sources of energy.													7M			
3.	a)	What are the v	/ario	us wa	ays b	y wł	nich la	and i	s deg	grade	ed?						7M
	b)	 Discuss role of an individual in conservation of natural resources. 7 												7M			
4.	a)	Write about so	olid w	aste	man	ager	ment	of ur	ban	wast	e.						8M
	b)	Discuss the ef	fects	and	cont	rol n	neasu	ires	of the	erma	l poll	ution					6M
5.	a)	What is ecosy	stem	? Cla	assify	/ ecc	osyste	ems.									5M
	b)	Discuss in brie	ef abo	out p	rodu	cers,	, cons	sume	ers ar	nd de	ecom	pose	ers.				9M
6.	a)	Differentiate b	etwe	en g	eneti	c div	rersity	/ and	l spe	cies	diver	sity.					6M
	b)	Write about bio	odive	ersity	at lo	cal,	globa	l and	d nati	onal	leve	ls.					8M
7.	a)	What is rainwa	ater h	arve	sting	l? Cl	assify	/ the	rain	wate	r har	vestir	ng n	netho	ods.		8M
	b)	What is sustai	nable	e dev	elop	men	t? WI	nat a	re th	e imp	oorta	nt?					6M
8.		Discuss in brie	ef.														
		a) Family we	elfare	e pro	gram	ime i	in Ind	ia.									7M
		b) Environm	ient a	and h	iuma	n he	alth.										7M

Hall	Tic	ket Number :												-		
Code	e : 1	GC32											l		R-11/	R-13
II B.Tech. I Semester Supplementary Examinations May/June 2016																
Engineering Mathematics																
(Common to EEE & ECE) Max. Marks: 70 Time: 03 Hours											rs					
		ΔII	Que				•	ive qı I mar			arks	each)			
		7 41	Que	5101	13 00	in y C	*****	****	10 (1	- 1010		caoi	')			
1.	a)	Determine the Rank of the Matrix $A = \begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$ by reducing it to the												;		
Normal form											7M					
	b)	Describe the System of equations are consistent and solve them completely $3x+3y+2z=1$; $x+2y=4$; $10y+3z=-2$; $2x-3y-z=5$.												/ 7M		
2.	a)	Evaluate Real root of the Equation $x e^x - \cos x = 0$ using Newton Raphson Method.										7M				
	b)) Compute $y(0.1)$ and $y(0.2)$, if $y(x)$ is the solution of initial value problem										ı				
		$y^1 = xy + y^2, y$	v(0) =	1 by	the	Run	ge-K	utta I	Meth	bd						7M
3.	a)	Fit a Straight li	ne y	=ax	+b	to th	e da	ta y	(1961) = 8	, y(1	971)	=10	, y(19	981) = 12	, ,
		y(1991) = 10,	•	,					•	•				006, v	where x	
		represents yea											nes.			7M
	b)	Obtain the Rar	1	1		1	-		1	1	•	i i	_			٦
		X 68 Y 62	64 58		75 68	5 4		64 81	8		75 68		.0 .8	55 50	64 70	7M
4.	a)	Form a partia														3
		f(x) and $g(y)$	from	<i>z</i> =	= yf (.	(x) + y	¢g(y)	•								7M
	b)	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial x}$	$\frac{u}{u} + u$, wh	ere <i>i</i>	ı(x,0)) = 6	$e^{-3x}b$	y the	Sep	arati	on of	varia	ables		
		$\partial x = \partial x$ method.	t													7M
5.		Expand $f(x) =$	x sin	<i>x</i> ,0	< x <	: 2f	as a	Four	ier S	eries						14M
6	a)	Find the Fourie	er Co	sine	Trar	nsfor	m of	e^{-ax}	sin <i>ax</i>							7M
					r	$\cos r$)x		r c nsi	n <i>n</i> x						
	b)	Evaluate the Ir	ntegra	als (i)]-	$\frac{1}{a^2+b}$	$\frac{d}{dp}{dp}$	(ii)	$\int \frac{P^{-3}}{a^2}$	$\frac{p}{p^2}$	dp by	y Fot	urier	Trans	sform	
		Technique.			Ū				0							7M
7.	a)	For a continuo	us Ra	ando	om V	ariat	ole X	ː, sh	ow th	at E	(aX +	- <i>b</i>) =	aE(2	(X) + l	and	
		Var(aX+b) = a	a²Var	(X)	whe	ere a	and	b a	re co	nstar	nts.					7M
	b)	For the continu	Jous	prob	abilit	ty fur	nctio	n f(x)	k) = k	x^2e^{-x}	,whe	en x	≥0,†	find (i) k	
		(ii) Mean (iii) V				,		v `	-				-	,	-	7M
8.		Out of 800 Far (i) 3 Boys (ii)	5 Gi	rls (i	ii) Ei	ther	2 or 3	3 Воу	/s (iv			•		•	to have	
		Assume equal	prop	adilli	ues f	or B	oys a **		oiris.							14M

Code : 1G236

R-11/R-13

8M

6M

II B.Tech. I Semester Supplementary Examinations May/June 2016 Electrical Circuit Theory

(Electronics & Communication Engineering)

Max. Marks: 70

Time: 03 Hours

Answer any five questions All Questions carry equal marks (14 Marks each)

- a) Three resistors 12 ohm, 18 ohm and 36 ohm are connected in parallel. This parallel circuit is connected in series with a resistor 'R'. The whole circuit is connected to supply of 60 Volt and it is found that power developed in 12-ohm resistor is 48 watts. Determine the value of R and total power.
 - b) Differentiate between ideal sources and practical sources
- 2. a) Find the node voltages V_1 , V2 and V3 in the network of fig, And find the current Ix.

b) For the mesh-current analysis, explain the rules for constructing mesh impedance matrix and solving the matrix equation [Z]I = V

- 3 a) Define power factor. What is its Importance in a.c. Circuits?
 - A saw tooth voltage as shown in figure is applied to a capacitor of C= 30micro Farad. Find the capacitor current

7M

8M

 A sinusoidal 50Hz voltage of 200v supplies the three parallel circuits as shown in figure Find the current in each circuit and the total current. Draw the vector diagram

- b) Derive bandwidth for a series RLC circuit as a function of resonant frequency 6M
- 5. a) A balanced three phase star connected load with impedance 8+j6 ohm per phase is connected across a symmetrical 400V three phase 50Hz supply. Determine the line current, power factor of the load and total power
 7M
 - b) With a neat circuit and phasor diagram explain the three-phase power measurement by two-wattmeter method and derive the expression for Power Factor.
 7M
- 6. a) What is mutual inductance? Derive an expression for the mutual inductance between two magnetically coupled coils having self-inductances L1 and L2 respectively
 - b) Define: (i) Flux. (ii) mmf (iii) Reluctance. (iv) Magnetic field intensity 8M
- 7. a) Determine the Thevenin's equivalent for the figure

b) For the circuit shown, use superposition theorem to compute current I.

7M

7M

8. a) Find the current through load resistance R_L and also find the voltage drop across load using Millman's theorem for the network as shown in fig

b) State and explain Tellegan's theorem?

Page 2 of 2

7M

7M

Hall Ticket Number :											
Code : 1G331											
II B.Tech. I Semester Supplementary Examinations May/June 2016 Electronic Circuits (Electronics & Communication Engineering)											
Max. Marks: 70 Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each)											
1 a)	Define millers theorem and it's dual										
b)	For the emitter follower the circuit parameters are Rs=400 , R ₁ =R ₂ =60K , R _L =2.2K , h_{fe} =100 and h_{ie} =1.1K .determine the input resistance, output resistance, current gain and voltage gain.										
2 a)	a) How two amplifiers are cascaded using coupling.										
b)	Give the complete analysis of RC coupled CE amplifier.	10M									
3 a)	Write short notes on the effect of coupling capacitor on low frequency response.										
b)	A BJT has g_m =38m mhos, $R_{b'e}$ =5.9K , h_{ie} =6K , $r_{bb'}$ =100 , $C_{b'c}$ =12pF, $C_{b'e}$ =63pF and h_{fe} =200 at 1KHz calculate and cutoff frequencies and f_T .	8M									
4 a)	What are the effects of negative feedback in amplifiers	6M									
b)	An amplifier has a midband gain of 120 and a bandwidth of 250KHz i) If 4% negative feedback is introduced, find the new bandwidth and gain. ii) If the bandwidth is to be restricted to 1MHz, find the feedback ratio.	8M									
5 a)	What is the function of R and C elements in RC coupled oscillator	4M									
b)	A crystal has the following parameters L=0.5H, Cs=0.06pF, Cp=1pF and R=5K \cdot Find the series and parallel resonant frequencies and Q factor of the										
	crystal.	10M									
6 a)	How crossover distortion occurs in power amplifier.	7M									
b)	Derive the power efficiency in class B power amplifier.	7M									
7 a)	What is stagger tuning? How it improves selectivity.	6M									
b)	A tank circuit has a capacitor of 110 pF and a inductor of 90μ H.the resistance of the inductor is 5 determine i) The resonant frequency, ii) Impedance at resonance and iii) Q-factor and bandwidth.	8M									
8 a)	List different 78xx and 79xx series voltage regulators.	4M									
b)	Explain 723-voltage regulator in detail.	10M									

Hal	Ticket	Number :											
Cod	le: 1G3	332 R-11 /	R-13										
ll	B. Teo	ch. I-Semester Supplementary Examinations May/June 2016)										
Pulse & Digital Circuits (Electronics & Communication Engineering)													
Ν	Max. Marks: 70 Time: 03 Hours												
		Answer <i>any five</i> questions All Questions carry equal marks (14 Marks each)											

1.	a) Exp	plain the response of RC low pass circuit for exponential input signal.	7M										
	,	mited ramp is applied to an RC differentiator. What is the peak of the output											
	way	ve form for i) $T = RC$ ii) $T = 0.2 RC$ iii) $T = 5RC$	7M										
2.	a) Wh	at are the clamping circuits? State and prove the clamping circuit theorem.	7M										
	b) Exp	blain the two level transistor clipper circuits. Derive the equation for input											
	volt	age swing.	7M										
3.	a) Def	ine the following:											
0.	,	i) Storage time ii) Delay time iii) Rise time iv) Fall time	8M										
	b) Wri	te short notes on:											
		i) Diode Switching times ii) Switching characteristics of transistor.	6M										
4.	a) Dra	w the circuit diagram of Schmitt trigger and explain its operation. Derive the											
	exp	pression for UTP and LTP.	7M										
	b) Dra	w and explain the operation of collector-coupled monostable multivibrator.	7M										
5.	a) Exp	blain the basic principle of Miller and bootstrap time base generators.	7M										
	,	sign a relaxation oscillator to have 2 kHz output frequency using 2N3980 and											
		/ supply. Calculate the output amplitude. te: Specification are = 0.68 to 0.82, $I_P = 2\mu A$, $I_V = 1mA$, and $V_{BE(sat)} = 3V$.	7M										
	INUI	e. Specification are = 0.66 to 0.62, $IP = 2\mu A$, $IV = 111A$, and $V_{BE(sat)} = 5V$.	7 111										
6.	a) Wit	h the help of neat diagram, explain the working of two diode sampling gate.	7M										
	b) Wh	at is pedestal? How it affects the output of a sampling gate.	7M										
7.	a) Exp	plain the synchronization of sweep circuit with symmetrical signals.	7M										
	b) Dis	cuss in brief about the sine wave frequency division with a sweep circuit.	7M										
8.	a) Evr	plain the positive logic AND gate and negative logic AND gate using diode logic.	7M										
0.	, .	w and explain two-input TTL NAND gate with neat sketch.	7M										
	~, 510												

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code : 1G333

Max. Marks: 70

II B.Tech. I Semester Supplementary Examinations May/June 2016

Random Variables and Random Processes

(Electronics & Communication Engineering)

Time: 03 Hours

R-11/R-13

Answer any five questions All Questions carry equal marks (14 Marks each) *******

- 1. a) Define Bay's Theorem and Conditional probability
 - b) An elementary binary communication system consists of a transmitter that sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel occasionally causes errors to occur so that a 1 shows up at the receiver as a 0, and vice versa. The probabilities that the symbols 1 and 0 are selected for transmission are assumed to be P(B₁)=0.6 and P(B₂)=0.4.. Assume A₁ and A₂ are two receivers and B₁ and B₂ are two transmitters. Assume, the channel is binary symmetric channel. Calculate the $P(B_1/A_1)$, $P(B_2/A_2)$, $P(B_1/A_2)$ and $P(B_2/A_1)$.

- 2. a) Define Moments.
 - b) Find Characteristic function and Moment generating function of the given exponential density function.

$$f_x(x) = \begin{cases} \frac{1}{b}e^{-(x-a)/b} & x > a \\ 0 & x \le a \end{cases}$$
 10M

- 3. a) Show that "the density function of the sum of two statistically independent random variables is the convolution of their individual density functions" 7M
 - b) Prove that "The mean value of a weighted sum of random variables equals the weighted sum of mean values". 7M
- 4. Derive relations of Mean, Mean squared value of system response and Autocorrelation function of response in Random signal response of linear systems 14M
- 5. Define noise band width and Explain Modeling of noise Sources? 14M
- 6 Define Time averages and ergodicity. Derive the expression for mean-Ergodic and correlation-Ergodic processes. 14M
- 7. a) Define Auto-correlation function and list its properties.
 - b) Find the mean and variances of the random processes X(t). It's Auto-correlation function is shown below. Assume X(t) is stationary Ergodic processes with no periodic component.

$$R_{XX}(\tau) = 25 + \frac{4}{1 + 6\tau^2}$$
8M

8. Derive the expression for *Wiener-Khintchine* relations 14M

6M

- 4M

6M