\square

Code : 4GC34

II B.Tech. I Semester Supplementary Examinations May/June 2016

Environmental Science

 (Common to ECE \& IT)Max. Marks: $\mathbf{7 0}$
Time: 03 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

1. a) Explain the problems associated with ecosystem due to over exploitation 7 M
b) Describe in general the environmental crisis caused by population growth 7M OR
2. a) Environmental pollution is a global issue, discuss.
b) Write a note on the role of institutions in protecting the environment. 7M

UNIT-II

3. a) What are the problems faced by forest and tribal people due to deforestation. 7M
b) What are the causes for floods and how floods can be prevented

OR

4. a) Write short notes on land degradation and soil erosion 7M
b) Write in detail on alternative energy resources and their usage 7M

UNIT-III
5. a) Explain the concept of ecosystem and list the types of ecosystems 7M
b) Explain the food chains, webs and ecological pyramids with suitable examples 7 M

OR
6. a) Give a brief account of hot spots of biodiversity in India. 7M
b) What are the threats to biodiversity? How it will be protected. 7M

UNIT-IV
7. a) What is pollution? Write a note on water pollution and its prevention. 7M
b) Write short notes on noise pollution and soil pollution 7M

OR

8. a) What is meant by nuclear hazard? Discuss one case study on nuclear hazard 7M
b) Discuss about the control measures of industrial wastes 7M

UNIT-V
9. a) Write a note on different methods of rain water harvesting observed by you 7M
b) What is waste land reclamation? Explain 7M

OR
10. a) Explain in detail about the air act (prevention and pollution) 7M
b) Discuss the human welfare with reference to HIV/AIDS 7M

Code : 4GC32

II B.Tech. I Semester Supplementary Examinations May/June 2016

Engineering Mathematics

(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. Find the half range cosine series for $\mathrm{f}(\mathrm{x})=\mathrm{x}(\angle-\mathrm{x})$ in $0 \leq \mathrm{x}<2$ and hence find prove that $\frac{\pi^{2}}{12}=\frac{1}{12}-\frac{1}{2}+\frac{1}{32}-\frac{1}{42}+\frac{1}{5_{2}^{2}}-\frac{1}{62}+\cdots-----$ OR
2. Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}} \cdot \mathrm{H}^{2} \mathrm{nce}$, derive the Fourier sine transform of $\emptyset(\mathrm{x})=\frac{\mathrm{x}}{1+\mathrm{x} \overline{2}^{2}}$.

UNIT-II

3. a) Reduce the matrix $A=\left[\begin{array}{rrrr}8 & 1 & 3 & 6-7 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$ to the nc ${ }^{\text {r }}$ rmal form and find its rank.
b) Solve the equations $2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=16$

OR

4. If $A=\left[\begin{array}{ccc}3 & -2 & -5 \\ 4 & -1 & -5 \\ -2 & -1 & -3\end{array}\right]$ find the \bar{i} igen values and Eigen vectors of A.

UNIT-III

5. a) Find a real root of the equation $x_{2}-2 x-5=0$ using false position.
b) Find the reciprocal of 18 using Newton-Raphson method.

OR

6. Apply the Fourth order Runge-Kutta metr ${ }_{10 d}$, to $\mathrm{fi}^{\mathrm{nc}} \mathrm{I}_{\mathrm{at}}$ I approximate value of y when $x=1.2$ in steps of 0.1 , given that: $y^{\prime}=x^{2}+y^{2}, y(1)=1.5$

UNIT-IV

7. a) Find the cubic polynomial which takes the values:
$y(0)=1, y(1)=0, y(2)=1$ and $y(3)=10$.
b) Using Lagrange's formula find $f(4)$. Given

x	0	2	3	6
$\mathrm{f}(\mathrm{x})$	-4	2	14	158

OR
8. Evaluate $\int_{\mathrm{o}}^{-1} \sqrt{1+\mathrm{x}^{3}} \mathrm{ax}$ taking $\mathrm{h}=1$

Using (i) Simpson's $\frac{1}{3} \mathrm{rq}$ rule (ii) Trapezoidal rule

UNIT-V

9. a) By the method of least squares, find the straight line that best fits the following data.

x	1	2	3	4	5			
$f(x)$	14	27	40	55	68			
40								

b) Find the curve of best fit of the type $y=$ aebx to the following data by the method of least squares

x	1	5	7	9	12
y	10	15	12	15	21

OR

10. a) Form the partial differential equation by eliminating a, b from $a x_{z_{2}}, b y_{z_{2}}, z_{z_{2}} \leq 1$.

> :p-lol arre!
b) Solve $2 \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial y}=0$.

II B.Tech. I Semester Supplementary Examinations May/June 2016 Electrical Circuit Theory
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Use mesh analysis to find i_{0} in the circuit shown in below

b) Find the current through each branch by network reduction technique.

2. a) Perform mesh analysis for the circuit shown below to determine all the branch voltages and currents.

b) Find the current in the 10 resistance, V_{1} and source voltage V_{s} for the circuit shown in figure

3. a) Find the input impedance of the circuit shown in below Figure. Assume that the circuit operates at $\omega=50 \mathrm{rad} / \mathrm{s}$.

b) Find RMS and average values for a sinusoidal alternating quantity having a peak value of V_{m}

OR
4. Determine the branch currents, total current and the power supplied by the source for the circuit shown in figure below. Also draw the phasor diagram.

5. a) Derive an expression for the resonant frequency for a parallel circuit shown below

b) Distinguish between self and Mutual inductance. Also explain the significance of coefficient of coupling

OR

6. In the circuit shown in below Figure $R=2$ ohms, $L=1 \mathrm{mH}$, and $C=0.4 \quad \mathrm{~F}$.
a) Find the resonant frequency and the half-power frequencies.
b) Calculate the quality factor and bandwidth.
c) Determine the amplitude of the currents at resonant and half-power frequencies ω_{0}, ω_{1}, and ω_{2}.

7. a) Mention the advantages of 3-phase systems over single phase system.
b) The following star-connected impedances are connected to a 400 V , three phase system. $Z_{R}=j 30 \quad, Z_{Y=j 3}$ and $Z_{B}=-j 3$. Calculate the line currents by using stardelta conversion method if the phase sequence is RYB.

OR

8. Three star connected impedances, $Z_{1}=15+j 25$ per phase are connected in parallel with three delta connected impedances $Z_{2}=20-j 30$. The line voltage is 440 V . Find the line current, the power factor, the active power and the reactive power taken by the combination.

UNIT-V

9. Find the value of R_{L} that will absorb the maximum average power. Calculate that power.

10. a) Compute the current in 23 ohm resistor using super position theorem for the circuit shown below.

b) Determine the Thevenin's equivalent circuit.

II B.Tech. I Semester Supplementary Examinations May/June 2016 Electonic Circuits
 (Electronics and Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Sketch the h parameter model for CE configuration 4 M
b) A CE amplifier has the H-parameters given as $h_{i=}=1000 \quad h_{r e}=2 \times 10^{-4}$ and $h_{o e}=25 \mu \mathrm{mho}$ both the load and source resistance are 1 k determine current gain and voltage gain.

OR

2. a) List the characteristics and applications of common collector amplifier. 4 M
b) Explain common drain amplifier with circuit diagram. 10M

UNIT-II

3 a) What is half power bandwidth?
b) What is the effect of coupling capacitor on low frequency response? 10M

OR
4. Explain Emitter follower at high frequency in detail 14M
5. a) Prove that negative feedback increases the bandwidth and decreases distortion. 6M
b) An amplifier has an open loop gain 1000 and a feedback ratio of 0.04 .if the open loop gain change by 10% due to temperature find the percentage change in gain of the amplifier with feedback.

OR

6. a) Explain current series feedback in detail
b) The current series feedback transistor amplifier has $\mathrm{R}_{1}=20 \mathrm{k}, \mathrm{R}_{2}=20 \mathrm{k}$, $h_{i e}=2 k \quad, R_{L}=1 k \quad, R_{e}=100 \quad$ and $h_{f e}=80$. caluclate $A, B, R_{i f}, A_{f}$ and the loop gain in $d B$. 8 M

UNIT-IV

7. a) What is the condition for oscillations?
b) In a transistorized Hartley oscillator, the two inductances are 2 mH and 20 mH while the frequency is to be changed from 950 KHz to 2050 KHz . Calculate the range over which the capacitor is to be varied.10M

OR
8. a) Classify the oscillators based on circuits used. 4M
b) Explain the crystal oscillator and give its advantages. 10M

UNIT-V

9. a) Give the classification of large signal amplifiers 4M
b) Derive the expression for efficiency in class B amplifier 10M

OR
10. a) What is Q factor and what is it significance. 4 M
b) Explain single tuned capacitive coupled amplifier 10M

II B. Tech. I-Semester Supplementary Examinations May/June 2016

 Pulse and Digital Circuits

 Pulse and Digital Circuits}
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Define linear wave shaping? Discuss the response of RC low-pass circuit with
step and pulse inputs along with output waveforms. 8 M
b) A 1 KHz square wave output from an amplifier has rise time $\mathrm{tr}=200 \mathrm{~ns}$ and
percentage of tilt is 10%, determine lower and upper frequencies. 6 M
OR
2. a) Explain the RC differentiator with input and output waveforms. 7M
b) What is RC low-pass circuit? What is meant by ringing circuit? 7M

UNIT-II

3. a) What do you mean by delay time of a transistor? What are the factors contribute to it?
b) What are applications of a comparator? 5 M

OR
4. a) Explain the response of the clamping circuit when a square wave input is applied under steady state conditions.

8M
b) Design a diode clamper to restore the positive peaks of 1 KHz input signal to a
voltage level equal to 5 v . Assume the voltage drop across the diode is $0.7 \mathrm{v} \quad 6 \mathrm{M}$

UNIT-III
5. a) Draw the circuit diagram and waveforms of a transistor boot strap time base
generator and explain principle of operation
b) What are the different methods of generating a time base waveform? Explain
them briefly

OR
6. a) With the help of neat waveforms, explain frequency division with respect to a sweep circuit.
b) Explain the method of pulse synchronization of relaxation devices with examples 7M 7M

UNIT-IV

7. a) With the help of a circuit diagram, explain the working of an astable multivibrator 8 M
b) Design a self biased symmetrical binary with the help of following specifications. $\mathrm{Vcc}=10 \mathrm{~V}, \mathrm{Rc}=1 \mathrm{~K}, \quad \mathrm{~V}_{\mathrm{BE}}(\mathrm{sat})=0.3 \mathrm{~V}, \quad \beta_{\mathrm{on}}=20$, operating frequency is 80 KHz and impedance of the triggering source is 250 .

OR

8. a) Explain the operation of bistable multivibrator with circuit diagram and waveforms

UNIT-V

9. a) What is meant by sampling gates? Explain the working of four diode sampling
gate with help of neat circuit diagram.
b) What is pedestal? How pedestal can be reduced in a sampling gate circuit? 7M

OR

10. a) Explain DTL and RTL circuits with suitable circuit diagrams 8M
b) Compare the logic families 6M
\square
Code: 4G333
II B.Tech. I Semester Supplementary Examinations May/June 2016

Signals and Systems

(Electronics \& Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Examine whether the following signals are Periodic or not. If periodic determine the fundamental Time period.

$$
\text { (i) } \sin \left(\frac{4 \pi n}{3}\right)+\cos \left(\frac{2 n}{3}\right) \text { (ii) } 2 u(t)+3 \cos 2 \pi t
$$

b) Determine whether the following signals are Energy signals (or) Power signals.

$$
\begin{array}{ll}
\text { (i) } \sin ^{2} \omega_{0} t & \text { (ii) } x(n)=\left(\frac{1}{2}\right)^{n} u(n)
\end{array}
$$

OR
2. a) Find the Exponential Fourier Series for the following signal.

b) State and Prove the Time Shifting and Convolution properties of Fourier series.

UNIT-II

3. a) Find the Fourier transform of the signals
(i) $\operatorname{sgn}(t)$ (ii) $e^{-t} \sin 5 t u(t)$
b) Find the Inverse Fourier Transform of $X(\omega)=\frac{j \omega}{(2+j \omega)^{2}}$

OR

4. a) Define Hilbert Transform of a signal and Find the Hilbert Transform of $\boldsymbol{\operatorname { s i n }} \boldsymbol{\omega}_{0} \boldsymbol{t}$ 7M
b) State and prove the properties of Hilbert Transform

UNIT-III

5. a) Discuss Causality and Stability of LTI system?
b) Find the Frequency Response of an LTI system described by differential equation

$$
\begin{gathered}
\frac{d^{3} y(t)}{d t^{3}}+6 \frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+4 y(t)=3 x(t) \\
\text { OR }
\end{gathered}
$$

b) Obtain the conditions for distortion less transmission through a system.
7. a) Find the convolution of the following sequences
$(i) \boldsymbol{x}(n)=(1,2,3,1) \& h(n)=\{1,2,1,-1\} \quad(i i) x(n)=\{1,1,2,2\} \& h(n)=\{1,-2,1,-1\} \quad 7 \mathrm{M}$
b) What is aliasing? Explain its effect on sampling?

OR

8. a) State and Prove Parseval's power theorem.
b) Write the properties of Auto Correlation for periodic signals.

UNIT-V

9. a) State and Prove the Time Reversal and Frequency Shifting properties of Laplace Transform
b) Find the Impulse \& Step response of the following system.

$$
X(s)=\frac{5}{s^{2}+4 s+5}
$$

OR

10. a) State and prove Initial and Final value theorems of Z-Transform.
b) Find the Inverse Z-transform of

$$
x(z)=\frac{z(z+1)}{(z+1)^{3}(z+2)} ; K O C|z|>2
$$

