de	: 4G	C34												R-14	ļ
		Tech. I Sem	neste	ər Su	lqqu	leme	ento	ary E	xam	nina	tion	s Mo	ay/Ju	ne 2016	
				E	nvir	onn	nen	tal S	cie	nce)				
					(Co	mm	ion f	to EC	E &	IT)			T !		
-		Narks: 70 five units by	/ ch	nosir	າα ດ	ne c	nues	stion	from	n ea	chu	nit (ne: 03 Hours 4 = 70Marks)	
10 11 0				00011	ig o	(*****	****)		011 0	(0 / 1 1		,
						Į		NIT-I	J						
1.	a)	Explain the	•						•				•		
	b)	Describe in	gene	eral	the e	enviro	onmo			s cau	sed I	oy po	pulatio	on growth	
0	-)	F	4 - 1	- 114.	!-			OF							
2.	a) b)		•			•						onvi	ronmo	t	
	b)	Write a note	ont	nerc	ne oi	insu	itutio ſ			ecunq	y ine	envi	Ionme	HIL.	
-							L	UNIT							
3.	a)	What are the	•							•	•				
	b)	What are the	e ca	uses	for t	1000	s and			ds ca	an de	e pre	evented	d	
4	2)	Mrite abort	actor		and	doar	odot			ul ore	noion				
4.	a) b)	Write short i Write in deta				•							ane		
	5)			i ane	mau		nerg (-		55 ai		sii ua	aye		
-	-)	Eurolain tha				1	L	UNIT			(
5.	a) b)	Explain the Explain the f		•		•				•••			•		
	D)		000 0	Jiaiii	5, we	505 a	nue	OIOG	•	yran	nus v	viui 5	uitable	examples	
6.	a)	Give a brief	acco	unt d	of ho	t spo	ots of			itv in	India	Э.			
01	b)	What are the				•				•			d.		
	-,						Ċ	UNIT							
7.	a)	What is poll	ution	? \\/r	ite a	note	C			ıtion	and	its ni	eventi	on	
	b)	Write short							•				ovona	011.	
	,					1		OF	•						
8.	a)	What is mea	nt by	nucl	ear h	nazar	d? [Discus	s on	e cas	se stu	ıdy o	n nucle	ear hazard	
	b)	Discuss abc	out th	e co	ntrol	mea	sure	s of i	ndust	trial v	vaste	es			
							ſ	UNIT	-v						
9.	a)	Write a note	on c	liffer	ent m	netho	ر ds c			er ha	rves	ting o	observ	ed by you	
	b)	What is was										0			
	-							OF	2						
10.	a)	Explain in de	etail a	abou	it the	air	act (preve	ntion	n and	poll	ution)		
	b)	Discuss the	hum	an w	elfar	e wit	h ref	ferend	ce to	HIV/	AIDS	5			

R-14For the second s
Engineering Mathematics (Common to EEE & ECE) ks: 70 Time: 3 Hours five units by choosing one question from each unit (5 x 14 = 70Marks) ************************************
(Common to EEE & ECE) ks: 70 Time: 3 Hours five units by choosing one question from each unit ($5 \ge 14 = 70$ Marks) ********* UNIT-I Find the half range cosine series for $f(x) = x(z - x)$ in $0 \le x < 2$ and hence find prove that $\frac{\pi^2}{12} = \frac{1}{12} - \frac{1}{22} + \frac{1}{32} - \frac{1}{42} + \frac{1}{52} - \frac{1}{62} + $
five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ********* UNIT-I Find the half range cosine series for $f(x) = x(z - x)$ in $0 \le x < 2$ and hence find prove that $\frac{\pi^2}{12} = \frac{1}{12} - \frac{1}{22} + \frac{1}{32} - \frac{1}{42} + \frac{1}{52} - \frac{1}{62} + $
Find the half range cosine series for $f(x) = x(z - x)$ in $0 \le x < 2$ and hence find prove that $\frac{\pi^2}{12} = \frac{1}{12} - \frac{1}{22} + \frac{1}{32} - \frac{1}{42} + \frac{1}{52} - \frac{1}{62} + $
Find the half range cosine series for $f(x) = x(z - x)$ in $0 \le x < 2$ and hence find prove that $\frac{\pi^2}{12} = \frac{1}{12} - \frac{1}{22} + \frac{1}{32} - \frac{1}{42} + \frac{1}{52} - \frac{1}{62} + $
prove that $\frac{\pi^2}{12} = \frac{1}{12} - \frac{1}{22} + \frac{1}{32} - \frac{1}{42} + \frac{1}{52} - \frac{1}{62} +$ OR Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} + \frac{1}{1+x^2}$ Hence, derive the Fourier sine
Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$. Hence, derive the Fourier sine
410
110
transform of $\phi(x) = \frac{x}{1+x_2}$.
UNIT-II
Reduce the matrix $A = \begin{bmatrix} 8 & 1 & 3 & 6 & -1 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{bmatrix}$ to the new result form and find its rank.
Solve the equations $2x + y + z = 10$; $3x + 2y + 3z = 18$; $x + 4y + 9z = 16$
OR
If $A = \begin{bmatrix} 3 & -2 & -5 \\ 4 & -1 & -5 \\ -2 & -1 & -3 \end{bmatrix}$ find the Eigen values and Eigen vectors of A.
UNIT-III
Find a real root of the equation $x = 2x - 5 = 0$ using false position.
Find the reciprocal of 18 using Newton-Raphson method.
OR
Apply the Fourth order Runge-Kutta method, to find an approximate value of y
when $x = 1.2$ in steps of 0.1, given that: $y' = x^2 + y^2 + y'(1) = 1.5$
UNIT-IV
Find the cubic polynomial which takes the values:
y(0) = 1, $y(1) = 0$, $y(2) = 1$ and $y(3) = 10$.
Using Lagrange's formula find $f(4)$. Given
x 0 2 3 6
f(x) -4 2 14 158

8. Evaluate $\int_{0}^{1} \sqrt{1 + x^{3}} dx$ taking h = 1Using (i) Simpson's $\frac{1}{3}$ rq rule (ii) Trapezoidal rule

Page **1** of **2**

UNIT-V

9. a) By the method of least squares, find the straight line that best fits the following data.

X	1	2	3	4	5
f(x)	14	27	40	55	68
			40		

b) Find the curve of best fit of the type $y = ae_{bx} t_{to t}$ he following data by the method of least squares

Х	1	5	7	9	12
у	10	15	12	15	21

OR

- 10. a) Form the partial differential equation by eliminating a, b from ax by z 1.
 - b) Solve $2 \frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial y} = 0.$

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code : 4G235

II B.Tech. I Semester Supplementary Examinations May/June 2016 Electrical Circuit Theory

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours

R-14

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

******** UNIT-I

1. a) Use mesh analysis to find i_0 in the circuit shown in below

- 7M
- b) Find the current through each branch by network reduction technique.

OR

2. a) Perform mesh analysis for the circuit shown below to determine all the branch voltages and currents.

b) Find the current in the 10 resistance, V_1 and source voltage V_s for the circuit shown in figure

7M

7M

7M

3. a) Find the input impedance of the circuit shown in below Figure. Assume that the circuit operates at = 50 rad/s.

b) Find RMS and average values for a sinusoidal alternating quantity having a peak value of V_m

OR

4. Determine the branch currents, total current and the power supplied by the source for the circuit shown in figure below. Also draw the phasor diagram.

5. a) Derive an expression for the resonant frequency for a parallel circuit shown below

7M

b) Distinguish between self and Mutual inductance. Also explain the significance of coefficient of coupling

7M

OR

- 6. In the circuit shown in below Figure R = 2 ohms, L = 1 mH, and C = 0.4μ F.
 - a) Find the resonant frequency and the half-power frequencies.
 - b) Calculate the quality factor and bandwidth.
 - c) Determine the amplitude of the currents at resonant and half-power frequencies $_{0}$, $_{1}$, and $_{2}$.

14M

OR

8. Three star connected impedances, $Z_1=15+j25$ per phase are connected in parallel with three delta connected impedances $Z_2=20$ - j30 .The line voltage is 440 V. Find the line current, the power factor, the active power and the reactive power taken by the combination.

7. a) Mention the advantages of 3-phase systems over single phase system.

delta conversion method if the phase sequence is RYB.

b)

9. Find the value of R_{L} that will absorb the maximum average power. Calculate that power.

10. a) Compute the current in 23 ohm resistor using super position theorem for the circuit shown below.

47.0

200 V

b) Determine the Thevenin's equivalent circuit.

27 A

Ť

20 A

230

UNIT-V

14M

7M

7M

14M

7M

7M

The following star-connected impedances are connected to a 400 V, three phase

system. $Z_R = j30$, $Z_Y = j3$ and $Z_B = -j3$. Calculate the line currents by using star-

ode :	40	It Number :	
		331	
I	II D.	Tech. I Semester Supplementary Examinations May/June 2016 Electonic Circuits	
		(Electronics and Communication Engineering)	
	-	ks: 70 Time: 3 Hou	
nswe	r all	five units by choosing one question from each unit (5 x 14 = 70Marks)	
4		UNIT-I Skatch the honoremeter model for CE configuration	4 6
1.	a) b)	Sketch the h parameter model for CE configuration	4N
	b)	A CE amplifier has the H-parameters given as $h_{ie}=1000$ $h_{re}=2x10^{-4}$ and $h_{oe}=25\mu$ mho both the load and source resistance are 1k determine current	
		gain and voltage gain.	10N
		OR	
2.	a)	List the characteristics and applications of common collector amplifier.	4N
	b)	Explain common drain amplifier with circuit diagram.	10N
		UNIT-II	
3	a)	What is half power bandwidth?	4N
	b)	What is the effect of coupling capacitor on low frequency response?	10N
		OR	
4.		Explain Emitter follower at high frequency in detail	14N
5.	a)	Prove that negative feedback increases the bandwidth and decreases distortion.	6N
	b)	An amplifier has an open loop gain 1000 and a feedback ratio of 0.04.if the	
		open loop gain change by 10% due to temperature find the percentage change	01
		in gain of the amplifier with feedback. OR	8N
6.	a)	Explain current series feedback in detail	6M
	b)	The current series feedback transistor amplifier has $R_1=20k$, $R_2=20k$,	•
	,	$h_{ie}=2k$, $R_{L}=1k$, $R_{e}=100$ and $h_{fe}=80$.caluclate A, B, R_{if} , A_{f} and the loop gain in dB.	8N
		UNIT-IV	
7.	a)	What is the condition for oscillations?	4N
	b)	In a transistorized Hartley oscillator, the two inductances are 2mH and 20 mH	
		while the frequency is to be changed from 950 KHz to 2050 KHz. Calculate the range over which the capacitor is to be varied.	
			10M
		OR	10N
8.	a)	OR	10№ 4№
8.	a) b)		4N
8.	,	OR Classify the oscillators based on circuits used.	4N
8. 9.	,	OR Classify the oscillators based on circuits used. Explain the crystal oscillator and give its advantages.	4M 10M
	b)	OR Classify the oscillators based on circuits used. Explain the crystal oscillator and give its advantages. UNIT-V	4M 10M 4M
	b) a)	OR Classify the oscillators based on circuits used. Explain the crystal oscillator and give its advantages. UNIT-V Give the classification of large signal amplifiers	
	b) a)	OR Classify the oscillators based on circuits used. Explain the crystal oscillator and give its advantages. UNIT-V Give the classification of large signal amplifiers Derive the expression for efficiency in class B amplifier	4№ 10№ 4№

Hall	Ticke	et Number :								
Code	e: 40	G332	4							
		Tech. I-Semester Supplementary Examinations May/June 2010 Pulse and Digital Circuits (Electronics and Communication Engineering)	6							
		Marks: 70 Ill five units by choosing one question from each unit (5 x 14 = 70Marks)								
1.	a)	Define linear wave shaping? Discuss the response of RC low-pass circuit with step and pulse inputs along with output waveforms.	8M							
	b)	A 1KHz square wave output from an amplifier has rise time tr = 200ns and percentage of tilt is 10%, determine lower and upper frequencies.	6M							
2.	a)	Explain the RC differentiator with input and output waveforms.	7M							
	b)	What is RC low-pass circuit? What is meant by ringing circuit?	7M							
3.	a)	What do you mean by delay time of a transistor? What are the factors contribute to it?	9M							
	b)	What are applications of a comparator? OR	5M							
4.	a)	applied under steady state conditions.	8M							
	b)	Design a diode clamper to restore the positive peaks of 1KHz input signal to a voltage level equal to 5v. Assume the voltage drop across the diode is 0.7v	6M							
5.	a)	generator and explain principle of operation	7M							
	b)	What are the different methods of generating a time base waveform? Explain them briefly	7M							
6.	a)	OR With the help of neat waveforms, explain frequency division with respect to a sweep circuit.	7M							
	b)	Explain the method of pulse synchronization of relaxation devices with examples	7M							
7.	a)	With the help of a circuit diagram, explain the working of an astable multivibrator	8M							
	b)	Design a self biased symmetrical binary with the help of following specifications. Vcc=10V, Rc=1K , $V_{BE}(sat)=0.3V$, on=20, operating frequency is 80KHz and impedance of the triggering source is 250.	6M							
8.	a)	OR Explain the operation of bistable multivibrator with circuit diagram and waveforms	7M							
	b)	Explain the operation of bistable multivibrator with circuit diagram and waveforms Design an astable multivibrator to generate a 5KHz square wave with a duty cycle of 60% and amplitude 12V. Use NPN Si transistor with $h_{fe}(min) = 70$, Vce (sat) = 0.3V, $V_{BE}(sat)=0.7V$, $V_{BE}(Cutoff)=0.7V$ and $Rc = 2 \text{ K}$. Draw the waveforms seen from Base and Collector.								
9.	a)	What is meant by sampling gates? Explain the working of four diode sampling gate with help of neat circuit diagram.	7M							
	b)	What is pedestal? How pedestal can be reduced in a sampling gate circuit? OR	7M							
10.	a)	Explain DTL and RTL circuits with suitable circuit diagrams	8M							
	b)	Compare the logic families	6M							

Hall Ticket Number :						l	

Code : 4G333

II B.Tech. I Semester Supplementary Examinations May/June 2016

Signals and Systems

(Electronics & Communication Engineering)

Max. Marks: 70

Time: 3 Hours

R-14

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. a) Examine whether the following signals are Periodic or not. If periodic determine the fundamental Time period.

$$(i)sin\left(\frac{4\pi n}{3}\right) + cos\left(\frac{2\pi}{3}\right) \quad (ii) \ 2u(t) + 3cos2\pi t \tag{7M}$$

b) Determine whether the following signals are Energy signals (or) Power signals.

(i)
$$\sin^2 t$$
 (ii) $x(n) = \left(\frac{1}{2}\right)^n u(n)$ 7M

OR

2. a) Find the Exponential Fourier Series for the following signal.

b) State and Prove the Time Shifting and Convolution properties of Fourier series. 7M

a) Find the Fourier transform of the signals
 (i) sgn(t) (ii) e^{-t} sin5tu(t)

6. a) Explain ideal filters?

b) Find the Inverse Fourier Transform of $X(\omega) = \frac{j\omega}{(2+j\omega)^2}$

- $\sigma = \frac{1}{(2+j\omega)^2}$ 7M
- OR

4.	a)	Define Hilbert Transform of a signal and Find the Hilbert Transform of $sin_0 t$	7M
	b)	State and prove the properties of Hilbert Transform	7M

- 5. a) Discuss Causality and Stability of LTI system? 7M
 - b) Find the Frequency Response of an LTI system described by differential equation

$$\frac{d^3 y(t)}{dt^3} + 6 \frac{d^2 y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 4 y(t) = 3x(t)$$
7M

7M

7M

7M

b) Obtain the conditions for distortion less transmission through a system. 7M

UNIT-IV

7.	a)	Find the convolution of the following sequences					
		$(i) \ x(n) = \{1, 2, 3, 1\} \ \& \ h(n) = \{1, 2, 1, -1\} (ii) \ x(n) = \{1, 1, 2, 2\} \ \& \ h(n) = \{1, -2, 1, -1\}$	7M				
	b)	What is aliasing? Explain its effect on sampling?					
		OR					
8.	a)	State and Prove Parseval's power theorem.	7M				
	b)	Write the properties of Auto Correlation for periodic signals.	7M				
9.	a)	State and Prove the Time Reversal and Frequency Shifting properties of					
		Laplace Transform	7M				
	L)	Find the Impulse 9. Step response of the following system					

b) Find the Impulse & Step response of the following system.

$$X(s) = \frac{5}{s^2 + 4s + 5}$$
 7M

10. a) State and prove Initial and Final value theorems of Z-Transform. 7M

OR

b) Find the Inverse Z-transform of

$$X(z) = \frac{z(z+1)}{(z+1)^3(z+2)} ; ROC |z| > 2$$
7M