Hall Ticket Number :

\square
Code: 5G131
R-15
II B.Tech. I Semester Regular \& Supplementary Examinations Nov/Dec 2017
Advanced Data Structures Through C++
(Common to CSE \& IT)
Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I1. a) Define a class and a class member. Explain static class members with the help of an example.b) Discuss friend functions in $\mathrm{C}++$ giving suitable example.8M

OR

2. a) What is dynamic memory management? Write a C_{++}program demonstrating the usage of new and delete operators for a single variable as well as for an array.
b) Define a class Rectangle which has a length and a breadth. Define the constructors and

Abstract

the destructor and member functions to get the length and the breadth. Write a global function which creates an instance of the class Rectangle and computes the area using the member functions.

UNIT-II

3. a) What's the difference between public, private, and protected? How can we protect derived classes from breaking when we change the internal parts of the base class?
b) What is Hybrid inheritance? Write a program to illustrate the concept of Hybrid Inheritance.

OR

4. a) Write a C ++ program using stack ADT that reads an infix expression, converts the expression to postfix form and evaluates the postfix expression.
b) Explain the need for "Virtual Destructor". Can we have "Virtual Constructors"? 6M
UNIT-III5. a) Define hashing, hash function and collision giving suitable examples.7M
b) Explain the different methods that are used to calculate hash functions. 7M
OR6. a) Explain the linear probing method in Hashing? Also explain its performance analysis?7M
b) What is hashing with Chains? Explain? Compare this with Linear Probing? 7M
UNIT-IV
5. a) Write a method to find the height of a Binary Search Tree? 8M
b) Explain the list representation of a tree by means of an example. 6M
OR
6. a) Explain different rotations in AVL Trees for insertion.7M
b) Explain insertion and deletion in a priority queue. 7M
UNIT-V
7. a) Define red-black tree. Find out the worst case time complexity if a new node is inserted in a red-black tree with n nodes (height of a red-black tree). 7M
b) Define B-tree. Explain about insertion operation in a B-tree 7M
OR
8. a) Discuss various types of pattern matching algorithms. 8M
b) Explain how insertion and deletion operations is done on a Splay Tree. 6M

Code: 5G132

II B.Tech. I Semester Regular \& Supplementary Examinations Nov/Dec 2017 Digital Logic Design

(Computer Science \& Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) i. Perform the following division in binary: 1011111 divided by 101
ii. Convert decimal 9126 to both BCD and ASCII codes. For ASCII, an odd parity bit to be appended at the left
b) i. parity bit to be appended at the left m of minterms and product of maxterms:

Express the following function in su
ii. $f(w, x, y, z)=x^{\prime} z+w^{\prime} z+x z$
2. a) Convert the following with indicated bases to decimal(4310) $)_{5}$ and (198) ${ }_{12}$
b) Convert the following with her canonica ies to decimal(4:
(i) $\quad F(A, B, C)=\Sigma(1,3,7)$
(ii) $F(x, y, z)=\pi(d, 1,2,3,4,6,12)$
3. a) Draw logic

UNIT-II
USIIT-II

$$
\begin{array}{ll}
\text { (i) } Y=A^{\prime} B^{\prime}+B(A+C) & \text { (ii) } Y=(A+B)\left(C^{\prime}+D\right.
\end{array}
$$

 NAND gates. $F(A, B, C, D)=\Sigma_{1}(0,1,3,4,, 6,9,11)+\sum(2,5)$

OR

4. Explain about integrated circuits in detail.

UNIT-III

5. a) Design a combinational circuit that converts a 4-bit gray code to a 4-bit binary number; Implement the circuit with exclusive-OR gates.
b) Design a code converter that converts a decimal digit from the 8, 4, 2-1 code to BCD.

OR

6. a) Draw the logic diagram of a 2-to-4 line decoder using NOR gates only. Include an enable input.
b) Implement function

UNIT-IV

7. a) Write short notes on
(i) Ripple counter
(ii) Binary Ripple counter 8M
b) Design a 4-bit binary synchronous counter with D flip-flops 6M

OR

8. a) Design a sequential circuit with two JK flip-flops A and B and two inputs E and x. If $\mathrm{E}=0$, the circuit remains the same state regardless of the value of x , when $\mathrm{E}=1$ and $\mathrm{x}=1$, the circuit goes through the state transition from 00 to 01 to 10 to 11 , and repeats. When $E=1$ and $x=0$, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeats.
b) Write the characteristic tables of
(i) D flip-flop
(ii) T flip-flop

UNIT-V

9. a) Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to square of the input number
b) Implement the following two Boolean functions with a PLA:
$F 1(A, B, C)=\sum(0,1,2,4)$
$F 2(A, B, C)=\sum t_{0,5,6,7)}$

OR

10. a) Compare asynchronous and synchronous sequential circuits
b) The Boolean functions ${ }^{5}$, th 3 inputs of an SR latch are
$S=x_{1}{ }^{1}, x_{2}{ }^{\prime} x_{3}+x_{1} x_{2}{ }^{\mathrm{fc}}{ }^{3}$
$R=x_{1} x_{2}{ }^{\prime}+x_{2} x_{3}{ }^{\prime}$
Obtain the circuit diagram using a minimum number of NAND gates

II B.Tech. I Semester Regular \& Supplementary Examinations Nov/Dec 2017

Discrete Mathematics

(Common to CSE \& IT)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the difference between the principal of disjunctive and conjunctive normal forms.
b) $\mathrm{OK}_{\text {,tain the frincipal } \mathrm{ms}}^{\text {mjunctive }}$ normal form of the formula given by
$(\sim P \rightarrow R) \wedge(Q \rightarrow P)$
7M

OR

2. a) Write short notes on Universal Quantifiers
b) Prove or disprove the validity of the following arguments

Every living thing is a plant or animal
David's dog is alive and it is not a plant
All animals have hearts
Hence, David's dog has a heart

UNIT-II

3. a) Explain the properties of relations with example?
b) Draw the Hasse diagram of the following set under the partial ordering relation "DIVIDES" $\{3,9,27,54\}$

OR

4. a) Let \bar{z} be the group of ir itegers with the binary operation * de fined by $\stackrel{b}{b}-z$, for all $a, b \in z$. Firld ghe identity element of the group $(z, *)$?6M
b) Explain Homomorphism,Isomorphism with an example 8M

UNIT-III

5. a) Explain pigeonhole principles with example.
b) How many numbers can be formed using the digits $1,3,4,5,6,8$, and 9 if no repetitions are allowed?

OR

6. a) Find the number of ways of distributing 5 different books among 3 persons such that each one gets at least one book.
b) How many integral solutions are there to diffe int be sks a rong pers 20 where each $>=2$?7M
UNIT-IV

$x 7)\left(1+x+\ldots+x^{15}\right)$
8. a) Solve the recurrence relation $a_{n}-9 a_{n-1}+26 a_{n-2}-24 a_{n-3}=0$ for $n>=3$.
b) Solve the recurrence relation an $-a n-1=3 n+2, a_{0}=1, n \geq 1$ by substitution method. $8 M$

UNIT-V

9. a) State and explain the Four - Colour problem for planar graphs.
b) Prove that the regions of a plane graph can be 4 -colored if G has a Hamiltonian
cycle.

OR
10. a) Explain various types of graphs with examples 8M
b) Prove that K 5 is non-planar?
Hall Ticket Number :
Code: 5G236
II B.Tech. I Semester Regular \& Supplementary Examinations Nov/Dec 2017
Electrical Engineering and Electronics Engineering
(Common to CSE \& IT)
Max. Marks: 70
Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain about different types of electrical elements?7M
b) Deduce the equivalent resistance when R_{1}, R_{2} and R_{3} are connected in parallel. 7M
OR
2. Derive the necessary equations for converting star to delta and Delta to star 14M
UNIT-II3. a) With a neat sketch explain the constructional details and principle of operation of DCgenerator10M
b) Write the applications of DC generators 4 M
OR
3. a) Explain the working principle of DC motor with a neat diagram 7M
b) Derive the expression for torque of DC motor 7M
UNIT-III5. a) How the efficiency of single phase transformer can be find out from the OC and SCtests.14M
OR
4. a) Sketch the slip torque characteristics of three phase induction motor and explain 7M
b) Describe the procedure required to find out the efficiency of three phase induction motor by using a brake test. 7M
UNIT-IV
5. a) What is a PN junction diode and explain the V-I characteristics of PN junction diode 7M
b) What is rectifier and explain the operation of single phase half wave diode rectifier with a neat output waveforms 7M
OR
6. a) Draw and explain the input and output characteristics of CE amplifier 7M
b) How transistor can be acts as an amplifier 7M
UNIT-V
7. a) Explain about induction and dielectric heating and mention its industrial applications 14M
OR
8. a) Draw the block diagram of CRO and explain 7M
b) Explain any two applications of CRO 7M

|| B.Tech. I Semester Regular \& Supplementary Examinations Nov/Dec 2017

Probability \& Statistics
(Computer Science and Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) If $A_{1}, A_{2}, A_{3}, \ldots, A_{r}$ are n events then UN ithat
(i). $P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P\left(A_{i}\right)-\binom{$ how }{$n-1}$.
(ii) $P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)$
b) There are three companies $\ddot{X}, \ddot{Y}, \vec{Z}$ produce TVs. X produce twice as Y. While Y and Z produce the same number. It is known that 2% of $X, 2 \%$ of Y and 4% of Z are defective. All the TVs produced are put into one shop and then one TV is chosen at random then (i) what is the probability that the TV is defective?
(ii) Suppose a TV chosen is defective, what is the probability that this TV is produced by Company Y?

OR

2. a) The probability that the students A, B, C, D solve a problem $\operatorname{are}_{\frac{1}{3}, \frac{2}{5}, \frac{1}{5}} \mathrm{a}^{\text {nd }} \frac{1}{4} r \mathrm{r}^{3}$ Spectively. If all of them try to solve a problem then what is the probability that the problem is solved?
b) If A \& B are independent events then show that arobiciver tiependent.

UNIT-II

3. a) Prove that the Poisson distribution is the limiting case of Binomial distribution for very large trails with very small Probability.
b) If the top 15% of the students receives A grade and bottom 10% receives F grade in Mathematics examination. Determine the (i) minimum mark to get A grade (ii) minimum mark to pass (not to get F grade). Assume that the marks are normally distributed with mean 76 and standard deviation 15.

OR

4. a) If a Poisson distrik ${ }_{\text {ution }} \mathrm{S}$ such that ${ }_{\left.\frac{3}{2} P Q^{X}=1\right)}=P(x=3)$ then fir ${ }_{1 d}$
(i) mean
(ii) $P(x \geq 1)$
(iii) $P(2<x<5)$
(iv) $P(X \leq 3)$
b) In a normal distribution 7% of the items are under 35 and 89% are under 63. Determine the mean and variance.

UNIT-III

5. a) A process of making certain ball bearing is under control if the diameters of the bearings have a mean of 0.5 cm . If a random sample of 10 of these bearings has a mean diameter of 0.5060 cm and standard deviation of 0.004 cm , is the process under control?
b) Find the degree of confidence to assert that the average salary of school teachers is between Rs. 272 and Rs. 302 if a random sample of 100 such teachers revealed a mean salary of Rs. 287 with standard deviation of Rs. 48.

OR

6. a) A population consists of four numbers $2,3,4,5$. Consider all possible distinct samples of size 2 with replacement. Find (i) the population mean (ii) the population standard deviation (iii) the sampling distribution of means (iv) the mean of standard deviation of means.
b) Construct standard deviation of means for the population $3,7,11,15$ by drawing samples of size two without replacement. Determine (i)
(ii) σ (iii) $\mu \bar{x}$.

UNIT-IV

7. a) A random sample of 400 flower stems has an average length of 15 cms . Can this be regarded as a sample from a large population with mean $16 \mathrm{cms} \& \sigma$ is 5 cm and also calculate the 95\% confidence interval for the mean.
b) Experience had shown that 20% of a manufactured product is of the top quality. In one day, production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 level.

OR

8. a) A study was conducted with 200 parents from north, 150 from south, 100 from east and 100 from west regions of India to determine the current attitude about prayers in public schools. Test at 0.01 level of significance for homogeneity of attitudes of parents among the four regions concerning prayers in the public schools.
b) In a study on the influence of habitation, the intelligent quotients (IQs) of 16 students from urban area was found to have a mean of 107 and standard deviation of 10, while the IQs of 14 students from a rural area showed a mean of 112 and standard deviation of 8 . Determine whether the IQs differ significantly at (i) 0.01 (b) 0.05 levels.

UNIT-V

9. a) Is there reason to believe that the life expected in south and north India is same or not from the following data

South	34	39.2	46.1	48.7	49.4	45.9	55.3	42.7	43.7		
North	49.7	55.4	57	54.2	50.4	44.2	53.4	57.5	61.9	56.6	58.2

b) Three cough syrups A, B, C were used on patients with cough with the following results:

Cough Syrup

	A	B	C	Total
Cured	41	27	22	90
Not Cured	79	53	78	210
Totals	120	80	100	300

Can we conclude whether there is significant (at 0.05 level) difference among the proportion of patients cured by the three brands A, B, C ?

OR
10. a) Test for goodness of fit of a uniform distribution to the following data obtained when a die is tossed 120 times. Use 0.05 L.O.S.

Face	1	2	3	4	5	6
Observed	20	22	17	18	19	24
Expected	20	20	20	20	20	20

b) Test for goodness of fit of normal distribution to the following data;

Class	$0-$ 100	$100-$ 250	$250-$ 500	$500-$ 750	$750-$ 1000	$1000-$ 1250	$1250-$ 1500
Frequency	7	9	19	12	8	5	4
							$* * *$

Hall Ticket Number :
\square
II B.Tech. I Semester Regular \& Supplementary Examinations Nov/Dec 2017

Principles of Programming Languages

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Discuss language evaluation criteria and the characteristics that affect them?
b) Define program language features? 7M
OR
2. a) List the three general methods of implementing a programming language? 7M
b) Explain syntax of declaration statement in PASCAL using BNF notation and syntax graphs? 7M
UNIT-II
3. a) Define heterogeneous array? Discuss the design issues of arrays? 7M
b) Discuss structural and name equivalence for types? Give an example of a language used for each approach? 7M
OR
4. a) Explain in detail the design issues of arithmetic expressions? 7M
b) Explain the different types of relational operators used in C, Ada and Fortran 95? 7M
UNIT-III
5. a) Discuss the importance of various control statements in programming languages? 7M
b) Explain Compound Statements, Selection and Iteration statements with examples? 7M
OR
6. a) Define subprograms? What are the advantages of subprograms? Explain different methods of parameter passing mechanisms to subprograms? 7M
b) Discuss with suitable examples static and dynamic scope? 7M
UNIT-IV
7. a) List out the features of abstract Data types? 6M
b) Differentiate java packages and c++ namespaces? 8M
OR
8. a) Discuss how parameter passing techniques are implemented and explain type checking techniques? 7M
b) Discuss the reasons for using exception handlers in a programming language. What if there exist programming languages with no exception handlers? 7M
UNIT-V
9. a) Explain different types of propositions present in logic programming? 7M
b) Define rule and goal statements of prolog? 7M
OR
10. a) Describe the scoping rule in common LISP, ML and HASKELL? 7M
b) Explain structures and arrays in ML .give examples? 7M
