Hall Ticket Number :	
Code: 1G131	R-13
II B.Tech. I Semester Supplementary Examinations Nov/Dec 20	17
Advanced Data Structures Through C++	
(Common to CSE & IT)	0.1.1
Max. Marks: 70 Time: 3 Answer any five questions	3 Hours
All Questions carry equal marks (14 Marks each)	
1. a) How the member functions can be defined? Explain.	6M
b) What is friend function? What are the merits and demerits of using frie function?	nd 8M
2. a) Explain the concept of function overloading and operator overloading with example.	an 7M
b) Explain Base Class and Derived Class with Example.	7M
3. a) Define Abstract Data Type? Explain the implementation of stack ADT in detai	ls. 7M
b) How we can measure the performance of an algorithm? Discuss in detail.	7M
4. Explain about linear probing and quadratic probing techniques used in hashin	ig. 14M
5. a) Define and explain in detail about Priority Queue ADT.	4M
b) Explain about external sorting and Multi way merge.	10M
6 Write and trace the algorithm to construct binary search tree for the values: 4, 2, 1, 3, 6, 8, 7. Also write the algorithm to search for a given element a trace it for the values 8 and 10.	
7. Write notes on the following:a) Splay trees.	
b) Red-black trees.	7M
	7M
8. a) Write and explain the Knuth-Morris-Pratt algorithm with suitable algorithm.	7M
 b) Write and explain Brute force algorithm. *** 	7M

Hal	l Tic	ket Number :]		
Coc	le: 1	G235	1	<u>]</u>	1	1	<u> </u>	1		1	I	1	Ţ	R-11/R-1	3
		B.Tech. I Ser	nes	ter S	Supr	olen	nen	tary	' Exc	amir	natio	ons I	Nov/	Dec 2017	
				Bas					ngir		ring				
Мс	ax. N	Aarks: 70			(C	omr	non	to C	CSE 8	<)				Time: 3 Ho	urs
1110									ques						010
		Al	l Que	estio	ns co	arry e		I MC	irks (14 M	arks	eac	h)		
1.	a)	Derive and exp	plain	the l	basic	circ	uit co	ompo	onent	S					7M
	b)	Three resistant combination i equivalent res	s co	nneo	cted	in s	eries	s wit	th a	resi	stand	ce of	f 1.95	. Find the	7M
-		a 30v supply													
2.	a) b)	State and expl Find the volta									•		cina S	Suparposition	7M
	b)	theorem and a	•								5110	wii u	sing c	superposition	
			8	-			20	× 				_			
				<i>5</i> .	_~	Ω ~~		-		~~		_			
			2Ω	A							4Ω	3			
				13			-	Ť	20V						
_			1											_	7M
3.	a)	Define and exp (i) Instantaneo				-							• •	ntity: nplitude	
		(v) Cycle		aluo	• •		•		Juenc		10011	Cy ((1.,) / (1)	ipilduo	6M
	b)	A 50Hz sinuso value is 20A. equation of cu	The	insta	ntan	eous	valu	ue of	curr					-	8M
4	a)	Write the adva								ase c	ircui	ts ove	er 1- pł	nase circuits.	7M
	⊆, b)	Three impeda	•				•		•				•		
		delta to a 100				d 50	Hz b	alan	ced s	uppl	y. Ca	alcula	ate the	line currents	714
_		and total powe													7M
5.	a)	Explain the pl Flemings right	•	ole o	f ope	eratio	on o	fac	do ge	enera	itor \	with 1	neat s	ketches and	7M
	b)	Explain the S		urne'	s tes	t on	D.C	shur	nt mo	tors v	with s	suital	ole dia	gram	7M
														•	
6.	a)	Define voltage voltage regula	tion	-											7M
	b)	A 200 / 400V, O.C (l.v): 200 S.C (h.v): 15	0V, 0	.7A, [°]	70W	,				Ū				•	7M
7.	a)	Explain rotatin	ig m	agne	tic fie			•	•			•		-	
	b)	relevant phase A 3 phase, 50		•		moto	r ho	e	tartir		raue	whic	hic 1	25 times full	7M
	D)	Neglecting st resistance, find	and ator	a m res	axim istan	um ce a	torqı and	ue v rota	vhich tiona	is : I lo:	2.5 sses	times and	s full d ass	load torque.	7M
8.	a)		. ,	•			•					•		eter	7M
	b)	Write short no							•		5				7M

Hall	Tic	ket Number :	
Code		R-11 / R-	13
	II B	Tech. I Semester Supplementary Examinations Nov/Dec 2017. Digital Logic Design (Computer Science & Engineering) arks: 70 Answer any five questions All Questions carry equal marks (14 Marks each) ********	ours
1		Convert the following into decimal and binary a) 4021.2_5 b) 634_8 c) 1032.2_4 d) ABCD ₁₆ e) 1001001.011_2	14M
2.	a)	Express the Boolean function $F = XY + XZ^1$ in a product of maxterm form	6M
	b)	 Simplify the Boolean functions to a minimum number of literals i. (X+Y)(X+Y¹) ii. XYZ+X¹Y+ XYZ¹ iii. ZX+ ZX¹Y iv. (A+B)¹ (A¹+B¹)¹ 	8M
3.	a)	Draw NOR logic diagram that implements the following	
	,	F(w,x,y,z) = (0,2,8,3,7,11,13,14)	7M
	b)	Determine the Canonical sum of products and product of sums for	
		A ¹ B+ABC+C ¹ +B ¹	7M
4.	a)	Design and draw a full subtractor which will use two half subtractors	7M
	b)	Design and Implement half adder using 4 NAND gates	7M
5.	a)	Design a modulo 12 synchronous counter using T-FF and draw the circuit diagram	8M
	b)	Write short notes on shift registers	6M
6.		A sequential circuit has two flip-flops (A and B), two inputs (x and y), and an output (z). The flip-flop input functions and the circuit output functions are as follows: $JA = xB + y^{1}B^{1}$ $KA = xy^{1}B^{1}$ $JB = xA^{1}$ $KB = xy^{1} + A$ $z = xyA + x^{1}y^{1}B$	
		Obtain the logic diagram ,state table ,state diagram and state equations	14M
7.	a)	What are the steps for the design of asynchronous sequential circuit?	4M
	b)	Explain circuits with latches	10M
8.	a)	Discuss about programmable logic array and programmable array logic ***	14M

Hal	l Tic	ket Number :													
Coc	le: 1	IG334	1	I	1		1	1		<u>.</u>	I	<u>.</u>	I	R-11 / R-	13
		B.Tech. I Ser											Vov	/Dec 2017	
			E	lect	-	-	-		and SE 8	_	rcui	ts			
Mc	ix. N	Aarks: 70			10				,JL 0	,				Time: 3 H	ours
		Al	l Que	estio			equa		quest rks (arks	eac	h)		
1.	a)	Derive the exp	oress	ion f	or dic	ode c	urre	nt eq	uatio	n					8M
	b)	Distinguish be	twee	n ze	ner a	nd a	valar	nche	brea	kdov	vn m	echa	nism	1	6M
2.	a)	Explain the we wave forms.	orkin	g of	full v	vave	rect	ifier '	with	neat	diag	ram	and	with relevant	7M
	b)	Explain FWR	with (C-filte	er an	d de	rive t	he e	xpres	ssion	for r	ipple	fact	or.	7M
3.	a)	Explain the o	pera	tion	of a	BJ⊺	Гin	CE	confi	igura	tion.	Giv	e its	input-output	
		characteristics													10M
	b)	For a PNP tran current is 10µA								-					4M
4.	a)				-		t usi	ng fix	ked b	ias a	irrang	geme	ent a	nd explain its	7M
	b)	Define Therma	al rur	nawa	y? D	erive	the	cond	lition	to av	void ⁻	Therr	nal r	unaway.	7M
5.	a)	principle with suitable analysis.) Define Thermal runaway? Derive the condition to avoid Thermal runaway.							7M						
	b)	Explain the pr sketch and dra	•		•			N-ch	anne	l De	pletio	on M	OSF	ET with neat	7M
6.	a)	Draw the h-pa the expressior			-			cuit f	or a	typic	al C	E an	nplifie	er and derive	7M
	b)	Define class-E	8 amp	olifier	? De	rive	the e	expre	ssior	n for	conv	ersio	n eff	iciency.	7M
7.	a)	Explain conce	pt of	feed	back	with	bloc	k dia	ıgran	۱.					6M
	b)	Draw the circu expression for		-			-			edba	ck ar	mplifi	er a	nd derive the	8M
8.	a)	Show that the least 3 for the	•				•	scilla	ator (using	BJ1	Гam	plifie	er must be at	8M
	b)	A crystal L = 0 i) Series						м = 1	lpF v	vith F	R = 5	K.F	ind		
		ii) Paralle				•	•								·
		iii) Find C	fac	tor of	t the	cryst	tal								6M

Hall Ticket Number :	
Code: 1G133	R-11 / R-13
II B.Tech. I Semester Supplementary Examinations N	Vov/Dec 2017
Mathematical Foundations of Computer Se	cience
(Common to CSE&IT) Max. Marks: 70	Time: 3 Hours
Answer any five questions	
All Questions carry equal marks (14 Marks eac l	n)
1. a) Show that \sim (p v (\sim p \wedge q)) and \sim p $\wedge \sim$ q are logically equi	ivalent. 7M
b) Check whether the following are well formed formulae or not.	
(i) ~ (p ^ q). (ii). ~ p v q .	7M
 a) How the validity of an argument can be checked by using transformed example. 	uth table? Give an 7M
b) Show that r v s follows logically from premises:	
cvd,(cvd) ~b,~b (a^~b)and(a^~b) rvs.	7M
3. a) What is a function? State the types of functions.b) What is an inverse function? Evaluate with an evaluate	7M
b) What is an inverse function? Explain with an example.	7M
4. Prove that "Every cyclic is abelian, but the converse is not tru	ıe". 14M
5. Solve the recurrence relation an-7an-1+10an-2= $7.3^{n}+4^{n}$	14M
a) How many three digit numbers are there which are even and digits?	nave no repeated 7M
b) Find the number of arrangement of the letters of MISSISSIPF	
,	
7. a) Find the chromatic number of a graph with only n- isolated ve	ertices 7M
b) Let G be graph with 11 or more vertices. Show that G is non-	planar. 7M
8. a) Give an example of a regular, connected graph of 6 vert	
complete.	7M
b) Prove that C is the only cycle graph isomorphic to its complet	ment. 7M
***	7101

Cada: 10022		 	1		J	 J	_	R-11 / R-13
Hall Ticket Number :								

Code: 1GC33

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017 **Probability and Statistics**

(Computer Science and Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any **five** questions All Questions carry equal marks (**14 Marks each**)

1 a) Find the coefficient of correlation between X and Y

Х	1	2	3	4	5	6	7	8	9	
Y	12	11	13	15	14	17	16	19	18	7M

b) Calculate expectation and variation of X, if the probability distribution of the random variable X is given by

Х	-1	0	1	2	3	
f	0.3	0.1	0.1	0.3	0.2	7M

- 2. a) The chance that doctor A will diagnose a disease x correctly is 60%. The chance that a patient will die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of doctor A, who had disease x, died. What is the chance that his disease was diagnosed correctly?
 - b) Box A contains 5 red and 3 white marbles and box B contains 2 red and 6 white marbles. If a marble is drawn from each box, what is the probability that they are both of same colour.
- 3. a) Calculate expectation and variance of X, if the probability distribution of the random variable X is given by

Х	-1	0	1	2	3	
F	0.3	0.1	0.1	0.3	0.2	7M

- b) Let X denote the number of heads in a single toss of 4 fair coins. Determine (*i*) P(X < 2) (*ii*) $P(1 < X \le 3)$
- 4. a) The mean and Variance of a binomial distribution are 4 and $\frac{4}{3}$ respectively. Find $P(X \ge 1)$
 - b) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find
 - (i) How many students score between 12 and 15?
 - (ii) How many score above 18?
 - (iii) How many score below 18?
- 5. If the population is 3,6,9,15,27
 - i. List all possible samples of size 3 that can be taken without replacement from the finite population.
 - ii. Calculate the mean of each of the sampling distribution of means.
 - iii. Find the standard deviation of sampling distribution of means. 14M

7M

7M

7M

7M

7M

- 6. a) In a study of an automobile insurance a random sample of 80 body repair costs had a mean of Rs. 472.36 and the S.D of Rs. 62.35. If \bar{x} is used as point estimate to the true average repair costs, with what confidence we can assert that the maximum error doesn't exceed Rs 10.
 - b) A random sample of 400 items is found to have mean 82 and standard deviation of 18. Find the maximum error of estimation at 95% confidence interval. Find the confidence limits for the mean if $\bar{x} = 82$.
- 7. a) If the distribution of the weights of all men travelling by air between Delhi and Mumbai has a mean of 163 pounds and a standard deviation of 18 pounds. What is the probability that the consigned gross weight of 36 men travelling between these two cities is more than 6000 pounds?
 - b) The mean life of a sample of 10 electric bulbs was found to be 1456 hours with S.D. of 423 hours. A second sample of 17 bulbs chosen from a different batch showed a mean life of 1280 hours with S.D. of 398 hours. Is there a significant difference between the means of two batches?
- 8. a) The following figures show the distribution of digits in numbers chosen at random from a telephone directory.

Digits	0	1	2	3	4	5	6	7	8	9		
Frequency	1026	1107	997	966	1075	933	1107	972	964	853		
Frequency 1026 1107 997 966 1075 933 1107 972 964 853 Test whether the digits may be taken to occur equally frequently in the												

Test whether the digits may be taken to occur equally frequently in the directory.

b) A random sample of 400 men and 200 women in a locality were asked whether they would like to have a bus stop near their residence. 200 men and 400 women in favour of the proposal. Test the significance between the differences of two proportions at 5% level.

7M

7M

7M

7M

7M

7M