	e: 4G131	
Coa	Il B.Tech. I Semester Supplementary Examinations Nov/Dec 2017	
	Advanced Data Structures Through C++	
	(Common to CSE & IT)	
-	x. Marks: 70 Time: 3 Hours	
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
. a)	Define a class and a class member. Explain static class members with the help of an example.	8
b)	Discuss friend functions in C++giving suitable example.	6
)	OR	
2. a)	What is dynamic memory management? Write a C++ program demonstrating the usage of	
	new and delete operators for a single variable as well as for an array.	6
b)	Define a class Rectangle which has a length and a breadth. Define the constructors and	
	the destructor and member functions to get the length and the breadth. Write a global	
	function which creates an instance of the class Rectangle and computes the area using the member functions.	8
	UNIT-II	,
8. a)	What's the difference between public, private, and protected? How can we protect derived	
, u)	classes from breaking when we change the internal parts of the base class?	-
b)	What is Hybrid inheritance? Write a program to illustrate the concept of Hybrid Inheritance.	
,	OR	
l. a)	Write a C ++ program using stack ADT that reads an infix expression, converts the	
	expression to postfix form and evaluates the postfix expression.	8
b)	Explain the need for "Virtual Destructor". Can we have "Virtual Constructors"?	(
	UNIT–III	
5. a)	Define hashing, hash function and collision giving suitable examples.	-
b)	Explain the different methods that are used to calculate hash functions.	-
	OR CR	_
i. a)	Explain the linear probing method in Hashing? Also explain its performance analysis?	
b)	What is hashing with Chains? Explain? Compare this with Linear Probing?	7
′.a)	Write a method to find the height of a Binary Search Tree?	8
b)	Explain the list representation of a tree by means of an example.	(
8. a)	OR Explain different rotations in AVL Trees for insertion.	-
,		
b)	Explain insertion and deletion in a priority queue.	-
	UNIT-V Define red black tree. Find out the worst case time complexity if a new pade is inserted in a	
	Define red-black tree. Find out the worst case time complexity if a new node is inserted in a	-
). a)	TEO-DIACK TREE WITH IT HOURS THEIDHEDEA TEO-DIACK TREET	
,	red-black tree with n nodes (height of a red-black tree).	-
). a) b)	Define B-tree. Explain about insertion operation in a B-tree .	-
,		-

Hall	Tick	et Number :]		
Code:	4G ¹	32										R-14	
		.Tech. I Sem	nester S	Supp	leme	entary	/ Exa	minc	atior	ns No	ov/D	ec 2017	
				-		-	Desi	-					
		rks: 70 er all five units	by cho	•			CSE &		ch ur	nit (5	5 x 14	Time: 3 Ho = 70 Marks)	ours
			,	0		******				,		,	
1.	a)	i. Perform theii. Convert de parity bit to	ecimal S	9126	to bot	h BCI	•				•		d 7M
	b)	L parity bit to Express th I. f(w,x,y,:	ne follow	ing fu	nction	i în su	n of m	interr	ms ar	nd pr	oduc	t of maxterms	:: 7M
						C	DR						
2.	a)	Convert the f	- ara - ar)₅ ano	d (198) ₁₂	4M
	b)		ollowing ollowing (A, B, C)	to ot	ļ		I form	1:			2,3,4,	6,12)	10M
3.	a) b)		agram f = $A'B' - f$ = $A'B' - f$ 300lean	+ B(A + B(A	(1 + C) (1 + C)	wing E (ii)	Y = (A + I	B)(C' ain it	+ D		on using only	6M y 8M
		NAND gales.	<i>г</i> (А, В,	C, D) = 2 ₁ (-,,0, <i>)</i> ,)R	11)	י <u>ר</u> ע	2,3)			OIVI
4.		Explain abou	t integra	ted c	ircuits								14M
						UN	IIT-III						
5.	a)	Design a con number; Impl				nat cor	nverts		•	•	de to	a 4-bit binar	у 7М
	b)	Design a coo to BCD.	le conve	erter t	hat co	nverts	a dec	imal	digit	from	the 8	3, 4, 2 -1 code	e 7M
						C	DR						
6.	a)	Draw the logi an enable inp	out.						-		-		6M
	b)	Implement fu	nction	(<i>A, B</i>	a 2-to , <i>C</i> , <i>D</i>)	-4 lir 2'	1, 3, 4	, 11, 1	12, 13	3,14,	,15)	with 8X1 MUX	X 8M

UNIT–IV

- 7. a) Write short notes on
 - (i) Ripple counter
 - (ii) Binary Ripple counter

b) Design a 4-bit binary synchronous counter with D flip-flops

OR

- 8. a) Design a sequential circuit with two JK flip-flops A and B and two inputs E and x. If E=0, the circuit remains the same state regardless of the value of x, when E=1 and x=1, the circuit goes through the state transition from 00 to 01 to 10 to 11, and repeats. When E=1 and x=0, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeats.
 - b) Write the characteristic tables of
 - (i) D flip-flop
 - (ii) T flip-flop

4M

8M

6M

UNIT–V

9.	a)	Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to square of the input number	7M
	b)	Implement the following two Boolean functions with a PLA:	
		$F1(A, B, C) = \sum (0, 1, 2, 4)$	
		$F2(A, B, C) = \sum_{i=0, 5, 6, 7}^{i}$	7M
		OR	
10.	a)	Compare asynchronous and synchronous sequential circuits	6M
	b)	The Boolean functions sor the inputs of an SR latch are	
		$S = x_1', x_2'x_3 + x_1x_{2x3}^{fc}$	
		$R = x_1 x_2' + x_2 x_3'$	

Obtain the circuit diagram using a minimum number of NAND gates 8M

	Hall	Ticket Number :	٦
L	Cod	e: 4G236	
		II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017	
		Electrical Engineering and Electronics Engineering	
		(Common to ME, CSE & IT) x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	

1.	a)	UNIT–I Explain about different types of electrical elements?	7M
••	b)	Deduce the equivalent resistance when R_1, R_2 and R_3 are connected in parallel.	7M
	0)	OR	7 101
2.		Derive the necessary equations for converting star to delta and Delta to star	14M
		UNIT–II	
3.	a)	With a neat sketch explain the constructional details and principle of operation of DC generator	10M
	b)	Write the applications of DC generators	4M
		OR	
4.	a)	Explain the working principle of DC motor with a neat diagram	7M
	b)	Derive the expression for torque of DC motor	7M
_	-)	UNIT-III	
5.	a)	How the efficiency of single phase transformer can be find out from the OC and SC tests.	14M
		OR	
6.	a)		7M
	b)	Describe the procedure required to find out the efficiency of three phase induction motor by using a brake test.	7M
7.	a)	UNIT-IV What is a PN junction diode and explain the V-I characteristics of PN junction diode	7M
1.	,		7 101
	b)	What is rectifier and explain the operation of single phase half wave diode rectifier with a neat output waveforms	7M
		OR	
8.	a)	Draw and explain the input and output characteristics of CE amplifier	7M
	b)	How transistor can be acts as an amplifier	7M
		UNIT–V	
9.	a)	Explain about induction and dielectric heating and mention its industrial applications	14M
10		OR Draw the block diagram of CRO and evaluin	714
10.	,	Draw the block diagram of CRO and explain	7M
	b)	Explain any two applications of CRO	7M

Hall Ticket Number :						

Code: 4GC33

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Probability & Statistics

(Computer Science and Engineering)

Max. Marks: 70

Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ****

- UNIT-I If A1, A2, A3,..., An are nevents then s UNI that 1. a) (i). $P(\bigcap_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - (\bigcap_{n=1}^{\text{how}} I).$ (ii) $P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$
 - There are three companies X, Y, Z produce TVs. X produce twice as Y. While Y and Z b) produce the same number. It is known that 2% of X, 2% of Y and 4% of Z are defective. All the TVs produced are put into one shop and then one TV is chosen at random then (i) what is the probability that the TV is defective?

(ii) Suppose a TV chosen is defective, what is the probability that this TV is produced by Company Y?

OR

- 2. a) The probability that the students A, B, C, D solve a problem are $\frac{1}{2}$, $\frac{2}{\epsilon}$, $\frac{1}{\epsilon}$ and $\frac{1}{4}$ respectively. 7M If all of them try to solve a problem then what is the probability that the problem is solved?
 - b) If A & B are independent events then show that brobbing the problem are ependent.

UNIT-II

- 3. a) Prove that the Poisson distribution is the limiting case of Binomial distribution for very large trails with very small Probability.
 - b) If the top 15% of the students receives A grade and bottom 10% receives F grade in Mathematics examination. Determine the (i) minimum mark to get A grade (ii) minimum mark to pass (not to get F grade). Assume that the marks are normally distributed with mean 76 and standard deviation 15.

OR

- 4. a) If a Poisson distribution is such that $\frac{3}{2PC}K = 1$ = P(x = 3) then find (i) mean (ii) $P(X \ge 1)$ (iii) P(2 < X < 5) (iv) P(2 < X(iv) $P(X \leq 3)$ 7M
 - b) In a normal distribution 7% of the items are under 35 and 89% are under 63. Determine the mean and variance. 7M

UNIT-III

- 5. a) A process of making certain ball bearing is under control if the diameters of the bearings have a mean of 0.5cm. If a random sample of 10 of these bearings has a mean diameter of 0.5060cm and standard deviation of 0.004cm, is the process under control?
 - b) Find the degree of confidence to assert that the average salary of school teachers is between Rs. 272 and Rs. 302 if a random sample of 100 such teachers revealed a mean salary of Rs. 287 with standard deviation of Rs. 48.

OR

- 6. a) A population consists of four numbers 2,3,4,5. Consider all possible distinct samples of size 2 with replacement. Find (i) the population mean (ii) the population standard deviation (iii) the sampling distribution of means (iv) the mean of standard deviation of means.
 - b) Construct standard deviation of means for the population 3, _, 11, 15 by drawing samples of size two without replacement. Determine (i) μ (ii) (iii) µx · 7M

7M

7M

7M

7M

7M

7M

7M

7M

R-14

UNIT–IV

- A random sample of 400 flower stems has an average length of 15cms. Can this be regarded as a sample from a large population with mean 16cms & is 5cm and also calculate the 95% confidence interval for the mean.
 - b) Experience had shown that 20% of a manufactured product is of the top quality. In one day, production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05level. 7M

OR

- 8. a) A study was conducted with 200 parents from north, 150 from south, 100 from east and 100 from west regions of India to determine the current attitude about prayers in public schools. Test at 0.01 level of significance for homogeneity of attitudes of parents among the four regions concerning prayers in the public schools.
 - b) In a study on the influence of habitation, the intelligent quotients (IQs) of 16 students from urban area was found to have a mean of 107 and standard deviation of 10, while the IQs of 14 students from a rural area showed a mean of 112 and standard deviation of 8. Determine whether the IQs differ significantly at (i) 0.01 (b) 0.05 levels.

7M

7M

7M

UNIT–V

9. a) Is there reason to believe that the life expected in south and north India is same or not from the following data

Sout	h	34	39.2	46.1	48.7	49.4	45.9	55.3	42.7	43.7		
North	ו	49.7	55.4	57	54.2	50.4	44.2	53.4	57.5	61.9	56.6	58.2

b) Three cough syrups A, B, C were used on patients with cough with the following results:

	Cough Syrup									
	А	В	С	Total						
Cured	41	27	22	90						
Not Cured	79	53	78	210						
Totals	120	80	100	300						

Can we conclude whether there is significant (at 0.05 level) difference among the proportion of patients cured by the three brands A,B,C?

7M

OR

10. a) Test for goodness of fit of a uniform distribution to the following data obtained when a die is tossed 120 times. Use 0.05 L.O.S.

Face	1	2	3	4	5	6
Observed	20	22	17	18	19	24
Expected	20	20	20	20	20	20

7M

b) Test for goodness of fit of normal distribution to the following data;

Class	0- 100	100- 250	250- 500	500- 750	750- 1000	1000- 1250	1250- 1500			
Frequency	7	9	19	12	8	5	4			

7M