Hall Tic	cket Number :	1
Code :	1G132 R-11/F	R-13
	II B.Tech. I Semester Supplementary Examinations May/June 2016 Digital Logic Design (Computer Science & Engineering)	
Ma	x. Marks: 70 Time: 03 Hour Answer any five questions All Questions carry equal marks (14 Marks each)	S
1.	Convert a) 23.625 to octal b) 235.2 to radix 4 c) 95.0625 to binary. 	14M
2. a)	Find the Demorgan equivalent to $G = u + v w' + x(y' + z)$	7M
	Draw the logic diagram for the following switching equations using only NOR gates. Use IEEE symbols. $K_1 = w' x + x z + y z'$ $K_2 = x' y' + x z + w' x'$ $K_3 = y z' + x' y$	7M
	Simplify the following three variable equation $P = f(r,s,t,u) = (1,3,4,6,9,11,12,14)$. Find the product functions for the following multiple output functions X = f(a,b,c) = (1,2,3,7) Y = f(a,b,c) = (1,2,3,6) Z = f(a,b,c) = (2,4,6)	4M 10M
4. a)	Draw the logic diagram for i) a binary full subtractor ii) Look-ahead carry.	10M
b)	Implement a full subtractor using 4:1 multiplexers.	4M
5. a)	Explain edge triggered Flip Flops with timing diagram.	6M
b)	Explain divide by 8 counter with timing diagram.	8M
6. a)	Explain deriving flow tables with an example.	8M
b)	Explain the difference between fundamental and pulse mode Asynchronous circuits.	6M
7. a)	Explain the difference between PROM and EPROM.	4M
b)	Explain PAL with an example.	10M
8. a)	Explain various state machine notations.	6M
b)	Explain the procedure for state classification to determine n-equivalence with an example.	8M

Hall Ticket Number :						
						ſ

Code : 1G235

Max. Marks: 70

II B.Tech. I Semester Supplementary Examinations May/June 2016 Basic Electrical Engineering

(Common to CSE & IT)

Time: 03 Hours

R-11/R-13

Answer *any five* questions All Questions carry equal marks (14 Marks each)

- 1. a) State and explain Ohm's law?
 - b) Calculate the voltage that is to be connected across terminal x-y in figure such that the voltage across the 2 ohms resistor is 5V. Also find I_a and I_b . what is the total-power loss in the circuit?

- 2. a) State and explain Thevenin's Theorem
 - b) Find Current through 15 resistor using Thevenin's Theorem.

- 3. a) Derive expression for r.m.s. and average value of a sinusoidal alternating quantity. 7M
 - b) Find RMS and average value of voltage waveform shown in figrure. Also find form factor and peak factor.

- a) Derive the relation between phase and line values of a 3-phase balanced star connected system.
 7M
 - b) Three impedances each of (5+j12) ohm are connected in star to a 220V,
 3-phase, and 50 Hz supply. Calculate the line currents
 7M

6M

7M

7M

8M

7M

5.	a)	Explain constructional features of a DC generator?	8M
	b)	The Armature of a 6 pole D.C generator has a wave winding containing 664 conductors. Calculate Generated E.M.F When Flex per Pole Is 0.06 wb and speed Is 250 R.P.M. at what Speed must the Armature be Driven to generate an	
		emf of 250 If the flex per pole is reduced to 0.58 wb?	6M
6.	a)	Explain the tests to be conducted to determine copper and iron losses with neat circuit Diagram.	7M
	b)	A 200 / 400V, 50Hz 1 phase transformer on test gave following readings:	
		O.C (I.v): 200V, 0.7A, 70W, S.C (h.v): 15V, 10A, 80W. Find efficiency at 0.8 p.f lagging at full load.	7M
7.	a)	How is a rotating magnetic field produced in a three phase induction motor?	
		Explain in detail with relevant phasors.	7M
	b)	Give the difference between an induction motor and a transformer.	7M
•	、		
8.	a)	Explain with neat sketch the air friction damping	6M
	b)	Explain with neat sketch the construction and working of a MI type Voltmeter.	8M

Hall Tic	:ket Number :										
Code :	1G131]]		R-11/F	₹-13
I	I B.Tech. I Ser	mester	Supplei	ment	ary Ex	amin	atior	ns M	ay/Jur	ne 2016	
Advanced Data Structures Through C++ (Common to CSE & IT)											
Ma	x. Marks: 70		(Con		0 03E	απ)			Tim	e: 03 Hour	S
		• •	Answer								
	All	Questio	ns carry	•	al mari *****	<s (14<="" td=""><td>Mark</td><td>s ea</td><td>Ch)</td><td></td><td></td></s>	Mark	s ea	Ch)		
1. a)	Define class?	Explain v	arious ob	ject or	riented	progra	ammir	ng fea	atures.		7M
b)	What are cons				rs? Ex	plain	how t	hey	differ fr	om normal	
	functions? Illus	strate with	n an exar	nple							7M
2. a)	Define Except	ion hanc	lling? Ex	plain 1	the coi	ncept	of op	erato	r overlo	bading with	
,	example.		U							U	7M
b)	What is need for	or Virtual	Base Cl	asses	? Expla	in with	n suita	ble e	xample.		7M
2 0)	Explain about	timo com	n lovity o	nd on		mplovi	tu Oha			occura tha	
5. aj	performance of			nu spa		пріелі	ty fit				7M
b)	Convert infix to	o prefix ((A*B) *(((C/D)-(E	E * (F*0	G))))					7M
4.	Define Hash Ta	able? Dis	scuss in c	letail a	about c	ollisior	n resol	lution	techniq	lue?	14M
5. a)	Define and exp	olain in de	etail abou	ıt Prior	rity Que	eue AD	DT.				4M
b)	Define Heap S		-			the ar	ray 25	5,19,1	5,13,12,	,4,6,7,1,3,9.	
	How the array	can be s	orted usi	ng hea	ap sort.						10M
6. a)	What is Binary	Search T	ree? Expl	ain ins	ertion o	deletio	n with	exan	ple and	program.	7M
b)	Define Binary	Tree?	Explain	about	Binary	/ Tree	e Trav	versa	l Techr	nique With	
	suitable Examp	ole.									7M
7. a)	Explain about I	Red blac	k Tree W	ith Exa	ample.						7M
,	Explain about \$				•						7M
,	Write and expla		•								7M
b)	What are the p	roperties	of Comp	oresse	d and S	Suffix t	ries.				7M

Hall Tic	cket Number :											
Code :	1GC33										R-11/I	₹-13
	ll B.Tech. I Se		Probc	emental ability 8 er Science	Stati	stic	S	ns I	√ay/J	une	2016	
Μ	ax. Marks: 70	(-			og.				Ti	ime:	03 Hoi	Jrs
				r any fiv	•							
	AI	ll Questio	ns carry	y equal ******		(14)	Mark	ks e	acnj			
1. a)	Write merits an	d demerits	s of Med	lian								6M
b)	If X and Y are s					_	1					
		I	c(aX + b)	Y, bX + a	$\mathbf{i}\mathbf{Y} = \frac{1}{a}$	$\frac{+2a}{a^2+b}$	$\frac{b}{b^2}$,					
	then find $r(X,$	Y), the co	oefficien	t of corre	lation b	betwe	een X	(an	d Y.			8M
2. a)	If A and B a	are any tv	vo ever	nts in a	sampl	e sp	ace	'S'	then I	Prove	that	
	(i) $P(A^c \cap B) =$	= P(B) - P	$(A \cap B)$	(ii) $P(A)$	$\cap B^c$)=	= P(A	A)-B	P(A	$\cap B$).			6M
b)	The Probabiliti respectively. The and Z become probability that been introduce	he probabi s manage Bonus Sc	lities tha rs are 3 heme w	at the Boi 3/10,1/2 vill be intr	nus Sch and 4 oduced	heme 1/5 re 1 (ii)	e will espec if the	be i tive e Bo	ntroduo ly (i) V onus So	ced i Vhat i chem	f X, Y is the e has	8M
3. a)		able x has 1 2 3 < 2k 3l	8 4	wing pro 5 6 5k 6k	bability 7 8 7k 8k		ributic	on				
	Find the value	of (i) k (i	ii)p(x	2) (iii)	р(2	2 x	5)					7M
b)	$If f(x) = k e^{-IxI}i$	is p. d. f ir	n −∞ x	∞ the	n find (i) the	value	e of	k (ii) P	(0 ×	c 4)	7M
4. a)	Show that mea	an and vari	ance of	a Binomi	al distr	ibutio	on is	np a	and npo	ļ .		7M
b)	If x is a norma and (ii) P(x	II variate w 45).	/ith mea	in 30 and	I S.D 5	i ther	n find	l (i)	P(26	х	40)	7M
5. a)	If sample of signal then find i) star			• •								7M
b)	A random sam μ=76 and the v 75 and 78	•					•	•			0	7M
6. a)	What is the ma using the mean population with	n of a rand	dom sar	•				•	•			4M
b)	A coin is tossed the coin may be				•	d 51	95 tin	nes	Discu	ss wh	nether	10M
7. a)	Explain Critical	Region ar	nd Level	of Signif	icance							6M
b)	A simple samp and S.D. 2.56 i a mean of 68.9 Australians are	nches, wh 55 inches	ile a sim and a S	ple samp S.D. of 2	ble of h .52 inc	eight hes.	ts of ´ Do t	1,60	0 Aust	ralian	is has	8M
8.	Fit a Poisson o 0.5 level of sigr		to the f	ollowing	data a	nd te	est the	e go	odnes	s of fi	it at a	

Hall Ticket Number :

Х	0	1	2	3	4	5	6	7	
f	305	366	210	80	28	9	2	1	14M

Hall Tie	ket Number :	
Code:	IG334 R-11	/ R-13
II B.	Tech. I-Semester Supplementary Examinations May/June 20)16
	Electronic Devices and Circuits (Common to CSE & IT)	
Мах	Marks: 70 Time: 03 Ho	urs
	Answer <i>any five</i> questions	
	All Questions carry equal marks (14 Marks each)	
1 a)	Distinguish between Zener and avalanche breakdown mechanisms	7M
	The voltage across a silicon diode at room temperature of 300°K is 0.71V whe	
0)	205mA current flows through it. If the voltage increases to 0.8V, calculate th	
	new diode current.	7M
2. a)	With neat diagram explain the working principle of a zener voltage regulator.	7M
b)	For a zener shunt regulator if V_s =10V, R_s =1K $\ ,R_L$ =10K $\ ,$ and input voltage varies	es
	from 25V to 40V. Find the maximum and minimum values of zener current.	7M
3. a)	Define amplifier? Explain how a transistor acts as an amplifier with the help	
	circuit diagram.	7M
b)	Compare CB, CE, CC configurations with respect to current gain, voltage gai input resistance and output resistance.	n, 7M
4. a)	Draw the collector to base bias circuit with BJT and derive the equation	s/
	expressions for stability factor.	7M
b)	Design a fixed bias circuit using a Si transistor having value of 100. V_{CC} is 10 and dc bias conditions are to be V_{CE} = 5V and I_C = 5mA.	0∨ 7M
5. a)	Explain the construction and operation of N-channel depletion type MOSFE	T
	with neat sketch.	8M
b)	Explain how FET acts as Voltage Variable Resistor.(VVR)	6M
6. a)	Define class-B amplifier? Derive the expression for efficiency of push-pull clas	
	B amplifier.	7M
b)	Prove that the maximum efficiency of a series fed, directly coupled class-	
7 o)	amplifier is 25%. Explain the general characteristics of negative feedback amplifier?	7M 7M
	Explain the general characteristics of negative feedback amplifier?	
D)	Classify the amplifiers based on the magnitudes of the input impedance ar output impedance of an amplifier relative to the source and load impedance ar	
	explain.	7M
8. a)	Derive an expression for frequency of oscillations of colpitts oscillator using BJT	. 8M
b)	In a transistorized Hartely oscillator the two inductances are 2mH and 20µI	⊣,
	while the frequency is to be changed from 950KHz to 2050KHz.Calculate the	
	range over which the capacitor is to be varied.	6M

Т

Γ

Hall Ticket Number :								
	-11/R-13							
Il B.Tech. I Semester Supplementary Examinations May/June 2016 Mathematical Foundations of Computer Science (Common to CSE & IT)								
Max. Marks: 70 Time: 03	Hours							
Answer <i>any five</i> questions All Questions carry equal marks (14 Marks each)								
1. a) Show That (~P (~Q R)) V (Q R) V (P R) \Leftrightarrow R.	7M							
b) Show that { , V}, {V}, and { ~ } are not functionally complete	7M							
2. a) Show that R V S follows logically from the premises C V D, (C V D) \rightarrow ~H \rightarrow (A ~ B) and (A ~ B) \rightarrow (R V S)	~H, 7M							
b) Show that $(x)(P(x) \lor Q(x)) ==> (x)P(x) \lor (\exists x) Q(x))$	7M							
 a) Let A={1,2,3,4}, and R={(1,1),(1,2),(2,2),(2,4),(1,3),(3,3),(3,4),(1,4),(4,4)}. Ve that R is a partial order on A. Also, write down the Hasse diagram for R. 	erify 7M							
b) Show that the functions $f(x)=x^3$ and $g(x)=x^{1/3}$ are inverses of one another.	7M							
4. State and prove Lagrange's theorem	14M							
5. a) State and prove Binomial theorem	10M							
b) Find the coefficient of x^9y^3 in the expansion of $(2x-3y)^{12}$	4M							
6. a) Solve the recurrence relation $a_n-6a_{n-1}+9a_{n-2}=0$ for $n>=2$	7M							
b) Solve the recurrence relation a_{n+2} -10 a_{n+1} +21 a_n =3 n^2 -2, n>=2	7M							
a) Define Minimal Spanning tree. Write Kruskal's algorithm to construct minim spanning tree	al 7M							
b) Write an application of stack in graphs	7M							
8. a) Prove that the complete bipartite graph $K_{3,3}$ is Hamiltonian but not Eulerian	7M							
b) Prove that every connected simple planar graph G is 6-colorable	7M							