Hall Ticket Number :

Code: 4GC34

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Environmental Science

(Common to ECE & IT)

		(Common to ECE & IT)	
Max.			ſS
Answe	r all	five units by choosing one question from each unit (5 x 14 = 70Marks)	
		UNIT-I	
1.	a)	Write a note on need for public awareness of environment and its importance	7M
	b)	Explain the main causes for environmental pollution and mention few preventive measures	7M
		OR	7 101
2.	a)	Explain the problems associated with natural resources due to over exploitation	7M
۷.	,		7 101
	b)	Discuss the role of people in protecting the environment with respect to loss of biodiversity	7M
3.	a)	What are the effects of deforestation and write a note on remedial measures to be taken.	7M
	b)	Discuss the pros and cons of traditional agriculture and modern agriculture	7M
	,	OR	
4.	a)	Write a note on renewable and non renewable energy resources	7M
	b)	What is the role of an individual in conserving natural resources	7M
	,		
5.	a)	Differentiate producers, consumers and decomposers	7M
	b)	What are ecological pyramids? Explain?	7M
		OR	
6.	a)	Write a detailed note on biodiversity in India	7M
	b)	Give a brief account on values of biodiversity	7M
_		UNIT-IV	
7.	a)	Define pollution. Write a note on different types of pollutions	7M
	b)	What is the main cause of global warming and what are the measures to be taken	7M
		OR	
8.	a)	What are the causes for the solid waste production and how it effects the	714
		environment?	7M
	b)	How sold waste is managed in urban area.	7M
9.	a)	Write a note on different methods of rain water harvesting	7M
	b)	write short notes on acid rains and ozone layer depletion	7M
	,	OR	
10.	a)	Explain in detail about the water act (prevention and pollution)	7M
-	b)	What is population explosion, write few reasons for it.	7M
	,	***	

R-14

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 4GC32

R-14

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015 Engineering Mathematics

(Common to EEE & ECE)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70Marks)

UNIT-I

- 1. (a) Find the Fourier series expansion for $f(x) = \pi x \text{ in} 0 < x < \pi$.
 - (b) Find the half-range sine series for $f(t) = t t^2$ in 0 < t < 1.

OR

- 2. (a) If F(s) is the complex Fourier transform of f(x) then prove that $F{f(ax)}=\frac{1}{a}F(\frac{s}{a}) a \neq 0.$
 - (b) Find the Fourier cosine transform of $(x) = e^{-ax} (x > 0, a > 0)$.

UNIT-II

3. (a) Reduce A into Echelon form and determine its rank

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

(b) Solve the system of equations

x + 3y - z = 0; 2x - y + 4z = 0; x - 11y + 14z = 0.

OR

4. (a) List the properties of Eigen values and Eigen vectors.

(b) Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$

UNIT-III

- 5. (a) Using the Newton-Raphson method, evaluate to two decimal places the root of the transcendental equation $f(x) = e^x 3x = 0$. Using between 0 and 1.
 - (b) Find the real root of the equation $x^3 + x-1=0$ using the method of iteration.

OR

6. Use Runge Kutta method to evaluate y(0.1) and y(0.2) given that y' = x + y, y(0) = 1.

UNIT-IV

7. (a) Using Newton's forward interpolation formula and the given table values

x	1.1	1.3	1.5	1.7	1.9
у	0.21	0.69	1.25	1.89	2.61

Obtain f(x) when x = 1.4

(b) Using Lagrange is interpolation formula find the value of y(10) from the following table:

Х	5	6	9	11
У	12	13	14	16

OR

8. Evaluate
$$\int_0^6 \frac{1}{1+x} dx$$
 by using
(i) Simpson's $\frac{1}{3}$ rule (ii) Simpson's $\frac{3}{8}$ rule.

9. (a) Fit a straight line y = a + bx from the following data

x	0	1	2	3	4
у	1	1.8	3.3	4.5	6.3

(b) Fit a second degree polynomial to the following data by the method of least squares

х	0	1	2	3	4					
у	1 1.8		1.3	2.5	6.3					
	OR									

10. (a) Eliminate the arbitrary function from z = x - y + f(x, y).

(b) Solve
$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

Hall Ticket Number :						

Code: 4G235

4.

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Electrical Circuit Theory

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70Marks)

- 1. a) Derive expressions for star to delta transformation.
 - b) Determine the current in the 2 ohms resistor for the circuit shown using nodal analysis.

7M

7M

7M

b)	Explain current and voltage division rules in	ו a given network.	7M
	UNIT-II		

- a) A circuit contains two impedances Z1 = (3 + J4) ohms and Z2 = (4 + J3) ohms in parallel and connected to 50V, 50 Hz supply. Determine the currents through impedances, total current, power and power factor.
 - b) Determine the input impedance of the circuit shown in below Figure.4 at $\omega = 10$ rad/s.

Find current I in the circuit shown in below Figure

7M

Page **1** of **2**

14M

rks)

7M

R-14

5.	a) b)	Derive bandwidth for a series RLC circuit as a function of resonant frequency	7M
	b)	A series RLC circuit has R=20 ohm, L=0.005H and C = $0.2 \times 10-6$ F. It is fed from a 100V variable frequency source. Find i) resonant frequency	
		ii) impedance at this frequency iii) band width and iv) Q-factor	7M
		OR	
6.	a)	A steel ring of 25cm mean diameter and of circular section of 3 cm in diameter has an air gap of 1.5 mm length. It is wound uniformly with 700 turns of wire carrying a current of 2 A. Calculate i) magneto motive force	
		ii) flux density	
		iii) magnetic flux	7M
	b)	Two coils connected in series have an equivalent inductance of 0.8H when connected in aiding, and an equivalent inductance of 0.5H when the	
		connection is opposing. Calculate the mutual inductance of the coils.	7M
		UNIT-IV	
7.	a)	Two wattmeters are used to measure power in a 3 phase, 3 wire load. Determine the total power, power factor and reactive power if the two wattmeter's read (i) 1000 watt each, both positive (ii) 1000 watt each, but of	
	L.)	opposite sign.	7M
	b)	A symmetrical 400 V, 3-phase, supplies a star connected load with $Z_{R} = 5 \Omega$,	
		$Z_{Y} = j5 \Omega$ and $Z_{B} = -j5 \Omega$. Determine the line currents when the phase	
		sequence is RYB.	7M
-		OR	
8.	a)	Derive the relations between line and phase quantities of a balanced three phase star connected system.	7M
	b)	Describe Millman's method of solving unbalanced 3-wire star connected load.	7M
	0)	UNIT-V	,
9.	a)	With suitable example explain Tellegen's theorem for AC circuits.	7M
	b)	Verify the reciprocity theorem for the circuit shown in figure	
		<u>k</u> k	
		В О	71/

7M

7M

10. a) State and explain superposition theorem.

ц В

b) Use the superposition theorem to find *the current* i for the circuit shown in figure.

OR

7M

Hall 1	Ficke	et Number :	
Code:	4G3	331 R-	14
		B. Tech. I-Semester Regular Examinations Nov/Dec 2015	
		(Electronics and Communication Engineering)	
Max.			
Answe	er all	five units by choosing one question from each unit (5 x 14 = 70Mark	S)
		UNIT-I	
1.	a)	Sketch the h parameter model for CB configuration	4M
	b)	Derive the expressions for current gain, input impedance, voltage gain, output	t
		impedance of a transistor.	10M
		OR	
2.	a)	List the characteristics and applications of common base amplifier.	4M
	b)	Explain common source amplifier with neat sketch.	10M
-		UNIT-II	
3.	a)	What are half power frequencies?	4M
	b)	What is the effect of emitter bypass capacitor on low frequency response?	10M
٨	a)	OR What is goin bandwidth product?	4M
4.		What is gain bandwidth product?	
	b)	A certain BJT transistor has $r_{\pi} = 2k\Omega$ and $\beta = 100$ at 1MHz and $\beta = 5$ a	
		20MHz. determine the values of f_t , f_b and c_{π} .	10M
_	、		
5.	a)	List the advantages of negative feedback.	6M
	b)	An amplifier has midband gain of 125 and a bandwidth of 250KHz calculate i If 4% negative feedback is introduced find the new bandwidth and gain.	
		If the bandwidth is to be restricted to 1MHz.find the feedback ratio.	, 8M
		OR	
6.	a)	Explain voltage shunt feedback	8M
	b)	List the differences between different types of negative feedbacks	6M
		UNIT-IV	
7.	a)	Classify the oscillators according to the frequency generated.	4M
	b)	Derive the expression for the frequency for RC phase shift oscillator.	10M
		OR	
8.	a)	Explain the working of crystal oscillator.	6M
	b)	A collipits oscillator is designed with $C_1=100pF$ and $C_2=7500pF$. The inductance is variable. Determine the range of inductance values, if the	
		frequency of oscillations is to vary between 950 KHz to 2050 KHz.	, 8M
		UNIT-V	
9.	a)	Explain transformer coupled class A power amplifier with neat sketch.	8M
	b)	Calculate the transformer turn ratio to match a 8Ω speaker load to an amplifie	r
		so that the effective load resistance is $7.2K\Omega$.	6M
		OR	
10.	a)	What are the basic characteristics of a tuned amplifier?	4M
	b)	Explain single tuned transformer coupled amplifier.	10M

Code	• 10	R-14									
Joue		B. Tech. I-Semester Regular Examinations Nov/Dec 2015									
		Pulse and Digital Circuits									
		(Electronics and Communication Engineering)									
		rks: 70 Time: 3 Hou	Jrs								
Answe	er all	five units by choosing one question from each unit (5 x 14 = 70Marks)									
		UNIT-I									
1.	a)	What is high-pass filter? Derive an expression for the output of a high-pass									
	,	circuit excited by a ramp input.	8								
	b)	In an RC low-pass circuit R=2K Ω and C= 1 μ F. A square wave with half period									
		of 5 μ s is applied as input to this circuit. Determine the output waveform.	6								
		OR									
2.	a)	What is an attenuator? Write application of attenuators in CRO?	6								
	b)	Explain the RC integrator with neat input and output waveforms.	8								
		UNIT-II									
3.	a)	Explain how transistor acts as a switch? Draw the characteristics and explain	7								
	b)	What is meant by piece wise linear approximation? Draw the V-I									
		characteristics of junction diode on the basis of above approximation.	7								
		OR									
4.	a)	Discuss series and shunt clipper using diode along with relevant waveforms	8								
	b)	Explain the clamping circuit theorem	6								
		UNIT-III									
5	a)	What is meant by boot strapping? Explain the principle of operation and									
		working of a bootstrap sweep circuit with the help of neat diagrams.									
	b)	Discuss the differences between Miller sweep circuit and Bootstrap sweep circuit.	6								
	,	OR									
6.	a)	Explain the principle of synchronization in sweep circuits and describe how frequency division synchronization is done in astable relaxation circuits with the									
		help of neat diagrams	8								
	b)	Explain about methods of linearity improvement?	6								
	0)		0								
_	,										
7.	a)	Draw a neat diagram of bi-stable multivibrator using transistor and explain its	0								
		working with help of timing diagrams	8								
	b)	Design an astable multivibrator to produce an unsymmetrical wave $t_1 = 0.5$ ms and $t_1 = 0.4$ ms. The amplitude of the assure wave is 15%. Assume by (min) = 20									
		$t_2 = 0.4$ ms. The amplitude of the square wave is 15v. Assume h_{fe} (min) = 20, $I_c(sat) = 5$ mA and Vce (sat) = 0V	6								
		OR	0								
8.	a)	What is monostable multivibrator? Explain with the help of neat circuit									
		diagram and derive an equation for pulse width.	7								
	b)	Explain Schmitt trigger circuit in detail.	7								
		UNIT-V									
9.	a)	Draw the circuit of an emitter coupled bi-directional sampling gate and explain									
5.		in detail	7								
	b)	Explain the six diode sampling gate with the help of circuit diagram	71								
		OR									
10.	a)	Explain the working of TTL-NAND with suitable circuit diagram	8								
	b)	Draw the OR gate with diodes and resistors. Verify the truth table	6								
	- /										

Page **1** of **1**

Hall T	icke	et Number :														_
			•	•	•	•	•	•	•		•				R-14	
Code:				mo	tor	Por		r Ev	ami	inat	ion			201	5	
	11	B. Tech. I	-361	nes		-		nd S			IOII:	S INC	w/Dec	201	5	
			Elec	troni	CS &				-		gine	ering			•	
	-	ırks: 70 II five units b	ov cł	າດດຣ	ina d	one	aue	stior	n fror	nea	hoch	unit			: 3 Hours Marks)	
			,				****	****	ר						, i cirrice y	
							\square	IT-I	J							
1.	a)	Sketch the s	signa	ıls. (i) 2 u	(t + 1	1) – 2	u(t -	- 3)	(ii) 1	•(t) • 1	u(−t ·	+ 3)		7	M
	b)	A rectangula	ar fui	nctio	n is d	lefine	ed as	x{t) = .	A ; -A ;	for for	$0 \le t$ $\pi/2$	$t \le \pi/2$ $\le t \le \pi$			
		Approximate					•			etwe	en th	e int	erval (0, 1	π), sι		
		that the Mea	an So	quare	e Erro	or is	Minir								7	M
								OF								
2.	a)	Find the Tri	gono	metr	ic Fo	urier	Seri	es fo	r the	follo	wing	sign	al.			
							_	c(t)								
		/	\frown		/		4	`/			\frown					
				\sum			¥			\checkmark			<u>}</u> →.			
		-2π		- 7	τ		⊺ 0			π		2	π́t		7	M
	b)	With regard					•			justi	fy the	e follo	owing sta	teme	ents	
		(i) Odd f													7	Ъ Л
		(ii) Even	Tunc	lions	snav	e no	sine	lenn	S						1	M
								UNIT	[- 							
3.	a)	Derive Four	ier T	ranst	form	from	Exp	onen	tial F	ourie	er se	ries?			7	M
	b)	Find the For	urier	Tran	sforn	n of t	the s	ignal	s.							
		(i) u(t)														
		(ii) <i>e</i> ⁻³ c	ost 1:	i(t)											7	M
								OF	ł							
4.	a)	State and Fourier Trar			e Tin	ne S	Scalir	ng ar	nd T	ime	Diffe	renti	ation pro	perti		M
	b)	Using prope	rties	of Fo	ourier	Tran	sforr	n, Fir	nd the	e Fou	irier ⁻	Trans	form of th	ie sig	nals	
		(i) e ^{-3t} t	ı(t −)	2)												
		(<i>ii</i>) t e ^{-3t}	u(t)												7	M

8M

6M

UNIT-III

	$\frac{d^2 y(t)}{dt^2} + 2 y(t) \frac{dy(t)}{dt} + 3t y(t) = x(t) $ is
	(i) Static or dynamic
	(ii) Linear (or) Non linear
	(iii) Causal or Non causal
	(iv) Time variant or time invariant
b)	The output y(n) for a LTI system, with input x(n) is given by $y(n) = x(n) - 2x(n-1) + x(n-2)$
	Determine the Magnitude & Phase response of the system.

5. a) Check whether the system described by the differential equation

OR

6.	a)	Explain Causality and Physical reliability of a system and hence give Paley-	
		Wiener Criterion.	7M
	b)	Derive the relation between Bandwidth and Rise Time of a system	7M

UNIT-IV

7. a) Find the Convolution of the following signals

(i) $x(t) = e^{-2t} u(t) \& h(t) = e^{-4t} u(t)$	
(ii) $x(t) = e^{-3t} u(t) \otimes h(t) = u(t+3)$	7M
State and Explain the Sampling theorem for Band pass signals.	7M

b) State and Explain the Sampling theorem for Band pass signals.

OR

8.	a)	Show that the Auto Correlation function and Energy Spectral Density forms a	
		Fourier Transform pair.	7M
	b)	Determine the Auto Correlation Function and Energy Spectral Density of	
		$x(t) = e^{-at} u(t)$	7M

UNIT-V

9.	a)	Find the Laplace Transform of the signal $x(t) = e^{-2t}u(-t) + e^{-3t}u(-t)$	7M
	b)	Find the Inverse Laplace Transform of the following	
		$X(s) = \frac{(s+1)}{2 + s^2 + s^2 + s^2}$	714

$$\overline{s^3 + 4s^2 + 6s + 4}$$

OR

7M

10. a) Find the Z-Transform of the following

(i)
$$x(n) = a^n \cos\left(\frac{n}{2}n\right) u(n)$$

(ii) $x(n) = a^{-n} u(-n-1)$ 7M

b) Derive the relation between Z-Transform and DTFT. 7M