II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Fluid Mechanics and Hydraulic Machines

(Electrical \& Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Why dynamic viscosity of a gas decreases with temperature and that of liquids increases with temperature?
b) A thin flat plate of size 80 cm by 50 cm is moved horizontally between two horizontal plane boundaries at a distance of 2 cm from the top boundary and 3 cm from the lower boundary. The viscosity of fluid above plate is 1.56 poises and the viscosity of fluid below the plate is 2.83 poises. What force is required to drag the plate at a horizontal velocity of $30 \mathrm{~cm} / \mathrm{s}$?

OR

2. a) Classify the flows of fluids. Mention practical example for each type of flow 7M
b) A pipe 450 mm in diameter branches into two pipes of diameters of 300 mm and 200 mm respectively. If the average velocity in 450 mm and diameter pipe is $3 \mathrm{~m} / \mathrm{s}$, find
(i) Discharge through 450 mm diameter pipe
(ii) Velocity in 200 mm diameter pipe if the average velocity in 300 mm pipe is $2.5 \mathrm{~m} / \mathrm{s}$

UNIT-II

3. a) Derive Bernoulli's equation from fundamentals
b) Flow of water occurs in downward direction through a vertical tapering pipe. The height of taper pipe is 3.5 m and the diameter at section 1 is 20 cm . The rate of flow is $10,000 \mathrm{lpm}$. What should be the diameter if $p_{1}=p_{2}$. Neglect losses of head. What would be the value of d if the flow is upward?

OR

4. a) Explain working principle of Venturimeter with neat sketch
b) Two pipes, one of 10 cm diameter, 200 m long and another of 15 cm diameter, 400 m long are connected in parallel. The friction factors are 0.0075 for the smaller pipe and 0.006 for large pipe. The total discharge through the system is 50 lps . Find the discharge and head loss in each pipe. Neglect minor losses. Calculate the equivalent length of a 20 cm diameter pipe having $\mathrm{f}=0.005$

UNIT-III

5. a) Derive an expression for the force exerted by a jet of water on moving inclined flat plate in the in the direction of jet
b) A nozzle of 40 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{s}$ perpendicular to a plate that moves away from the jet at $6 \mathrm{~m} / \mathrm{s}$. Find (i) the force on the plate (ii) the work done and (iii) the efficiency of the jet

OR

6. a) Explain how you calculate power developed from a given catchment area. 7M
b) Enumerate the different types of a hydro-electrical plants and explain concept of storage power plant and pumped storage power plant

Code: 4G536

UNIT-IV

7. a) Explain the concept of Cavitation in Hydraulic Turbine and List out the different measures that are usually adopted to combat the effect of cavitation

7M
b) Determine the appropriate scale ratio for a Kaplan turbine model to work under a head of 5 m and use water at the rate of $1.96 \mathrm{~m}^{3} / \mathrm{s}$. The prototype machine works under a head of 15 m and produces a power of 30,000 metric H.P. with a specific speed of 850 . Assume that the model and prototype have same overall efficiency of 90%. Calculate the speed and power output of the model.

OR

8. a) Draw a neat sketch of a Pelton Turbine and briefly indicate the functions of
each component.
b) A Francis turbine is required to give an output power of 15000 KW while working under a head of 14 cm and a speed of 300 rpm . Calculate the guide vane and runner angles and the leading dimensions of the runner. Assume overall efficiency $=80$, speed ratio $=0.75$, flow ratio $=0.15$, ratio of outer to inner diameters $=0.6$ and percent flow area blocked by runner vanes thickness $=4$

UNIT-V

9. a) Explain the working principle of Centrifugal pump with neat sketches
b) Determine the manometric and overall efficiencies of a centrifugal pump from the following data. Total head $=22$, discharge $=160 \mathrm{lps}$, liquid pumped $=$ brine of sp . Gr. 1.18, speed $=1200 \mathrm{rpm}$, diameter $=30 \mathrm{~cm}$, width $=5 \mathrm{~cm}$, shaft power $=55 \mathrm{KW}$ and vane angle at outlet $=35^{\circ}$. What is the type of impeller?

OR

10. a) Give a comparative analysis of a centrifugal and reciprocal pumps
b) A single -acting reciprocating pump has a diameter (piston) of 100 mm and stroke length 200 mm . The length and diameter of the suction are 6.5 m and 50 mm respectively. If the suction lift of the pump is 3.2 m and separation occurs when pressure in the pump falls below 2.5 m of water absolute and manometer reads 763 mm of mercury, find the maximum speed at which pump can be run without separation in the suction pipe.

7M
7M

7M
can be run without separation in the suction pipe.

Code: 4GC32

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Engineering Mathematics

(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. (a) Find the Fourier series expansion for $f(x)=\pi-x$ in $0<x<\pi$.
(b) Find the half-range sine series for $f(t)=t-t^{2}$ in $0<t<1$.

OR

2. (a) If $F(s)$ is the complex Fourier transform of $f(x)$ then prove that $F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right) a \neq 0$.
(b) Find the Fourier cosine transform of $(\mathrm{x})=\mathrm{e}^{-\mathrm{ax}}(\mathrm{x}>0, a>0)$.

UNIT-II

3. (a) Reduce A into Echelon form and determine its rank

$$
A=\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

(b) Solve the system of equations

$$
x+3 y-z=0 ; \quad 2 x-y+4 z=0 ; \quad x-11 y+14 z=0
$$

OR

4. (a) List the properties of Eigen values and Eigen vectors.
(b) Find the Eigen values and Eigen vectors of $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$

UNIT-III

5. (a) Using the Newton-Raphson method, evaluate to two decimal places the root of the transcendental equation $f(x)=e^{x}-3 x=0$. Using between 0 and 1 .
(b) Find the real root of the equation $x^{3}+x-1=0$ using the method of iteration.

OR

6. Use Runge Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1$.

UNIT-IV

7. (a) Using Newton's forward interpolation formula and the given table values

x	1.1	1.3	1.5	1.7	1.9
y	0.21	0.69	1.25	1.89	2.61

Obtain $\mathrm{f}(\mathrm{x})$ when $\mathrm{x}=1.4$
(b) Using Lagrange is interpolation formula find the value of $\mathrm{y}(10)$ from the following table:

x	5	6	9	11
y	12	13	14	16

OR

8. Evaluate $\int_{0}^{6} \frac{1}{1+\mathrm{x}} \mathrm{dx}$ by using
(i) Simpson's $\frac{1}{3}$ rule
(ii) Simpson's $\frac{3}{8}$ rule.

UNIT-V
9. (a) Fit a straight line $y=a+b x$ from the following data

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

(b) Fit a second degree polynomial to the following data by the method of least squares

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

OR
10. (a) Eliminate the arbitrary function from $\mathrm{z}=\mathrm{x}-\mathrm{y}+\mathrm{f}(\mathrm{x}, \mathrm{y})$.
(b) Solve $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$

Code: 4G231

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Switching Theory and Logic Design

(Electrical \& Electronics Engineering)

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Convert the following numbers as indicated:
(i) Decimal 225.225 to binary, octal and hexadecimal.
(ii) Binary 11010111.110 to decimal, octal and hexadecimal.
b) What is the Gray code? What are the rules to construct Gray code? Develop the 4 bit Gray code for the decimal 0 to 15.

OR
2. a) Determine the purpose of digital circuit of Fig.

b) Verify that the (i) NAND (ii) NOR operations are commutative but not associate.

UNIT-II
3. a) Simplify the following Boolean function for minimal SOP form using K-map and implement using NAND gates. $F(W, X, Y, Z)=\sum(1,3,7,11,15)+d(0,2,5)$
b) Simplify the Boolean functions using tabular method and verify result with K-map. $F(x, y, z)=\sum(7,13,14,15)$.

OR
4. a) What are the advantages of Tabulation method over K-map? Simplify the following Boolean function using Tabulation method.

$$
Y(A, B, C, D)=\sum(0,1,2,3,5,7,8,9,11,14)
$$

b) For the following function using K-map, Find minimal sum of products expression $T(W, X, Y, Z)=\sum(1,2,3,5,13)+d(6,7,8,9,11,15)$.

UNIT-III

5. a) Design 2×4 decoder using NAND gates.
b) Realize the following functions using PLA
$f_{1}(A, B, C)=\sum(0,2,4,5)$
$\mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(1,5,6,7)$
8M
OR
6. a) Design a BCD-to Gray code converter using
(i) 8:1 multiplexers (ii) dual 4:1 multiplexers and some gates.
b) For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit.

Inputs				Output			
x	y	z	A	B	C	D	
0	0	0	0	1	0	0	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	0	1	0	1	
1	0	0	1	0	1	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	1	1	

UNIT-IV

7. a) For the state diagram shown in Fig below. Write state table \& reduced state table.

b) Design an Excess-3 adder using 4-bit parallel binary adder and logic gates.

OR
8. a) Design the circuit and draw the logic diagram of the sequential circuit specified by the following state diagram. Use an RS flip-flop.

b) Design Mod-4 synchronous counter using J-K flip -flop
9. What are the conditions for the two machines are to be equivalent? For the machine given below, find the equivalence partition and a corresponding reduced machine in standard form:

PS	NS,Z	
	X=0	X=1
A	F, 0	$\mathrm{~B}, 1$
B	$\mathrm{G}, 0$	$\mathrm{~A}, 1$
C	$\mathrm{B}, 0$	$\mathrm{C}, 1$
D	$\mathrm{C}, 0$	$\mathrm{~B}, 1$
E	$\mathrm{D}, 0$	$\mathrm{~A}, 1$
F	$\mathrm{E}, 1$	$\mathrm{~F}, 1$
G	$\mathrm{E}, 1$	$\mathrm{G}, 1$

OR
10. a) Convert the following Mealy machine into a corresponding Moore machine.

PS	NS,Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{C}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{A}, 1$	$\mathrm{D}, 0$
C	$\mathrm{B}, 1$	$\mathrm{~A}, 1$
D	$\mathrm{D}, 1$	$\mathrm{C}, 0$

b) Draw the portion of an ASM chart that specifies the conditional operation to increment register R during state T 1 and transfer to state T 2 , if control inputs z and y are $=1$ and 0 respectively.
\square

Code: 4G232

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Electrical Machines-I

(Electrical \& Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Explain the following terms as applied to a DC armature winding
(i) Front Pitch
(ii) Back Pitch
(iii) Pole pitch
(iv) Commutator Pitch
b) Draw the winding diagram of a lap winding for 6 poles, 18 slots with coil sides/slot, double layer showing therein position of poles, direction of motion, direction of generated emf.
2. a) Discuss the necessity of commutator and brush arrangement for operation of DC machine
b) Explain the working principle of a DC generator

UNIT-II

3. a) List the methods used to improve the commutation problem. Explain resistance
method in detail.
b) A 6 pole generator has wave-connected armature having 550 conductors. It delivers 150A current at full load and the brush lead is 120 . Find the number of demagnetizing and cross magnetizing ampere turns per pole

OR

4. a) Explain the armature reaction effect in the DC machine
b) A Short shunt DC compound generator is supplying 150 A at 500 V . The resistance of armature, series and shunt field windings are $0.04 \Omega, 0.025$ and 300Ω respectively. Find the emf induced. If the same machine is connected as long shunt what will be induced emf.

UNIT-III

5. a) Two shunt generators running in parallel are supplying a load of 300A. One generator is rated at 65 kW and has regulation of 5% and other is rated at 130 kW and has regulation of 6%. The voltage rating of both the machines is 500 V . Assuming linear characteristic, find (i) the current supplied by each machine, and (ii) terminal voltage
b) Write a short note on parallel operation of shunt generator 7M

OR
6. a) Compare the external characteristics of all types of DC generators 7M
b) Explain the characteristics of DC Generators $\quad 7 \mathrm{M}$
7. a) A DC shunt motor working on 25 A at 400 V supply is running at 1200 rpm . The armature resistance is 0.4Ω and shunt field resistance is 200Ω. Find the back emf, (ii) mechanical power developed, (iii) gross torque, (iv) loss torque, (v) shaft torque and (vi) BHP. Assume stray losses to be 400W.
b) Describe the armature reaction and commutation effect in DC motor

OR

8. a) A $50 \mathrm{~kW}, 500 \mathrm{~V}$ DC shunt generator has armature resistance 0.04Ω and 250Ω resp. Find the total armature power developed when it works as (i) generator supplying 50kW output, and (ii) motor taking 50kW input
b) Explain the working of 3-point starter

UNIT-V

9. a) What are stray losses? How are they separated in DC motors
b) When retardation test is performed on the separately excited DC machine, the induced voltage falls from 200 V to 185 V in 20 seconds when the armature is disconnected from the supply. If the armature connection id changed suddenly from supply to load, it takes 12 A (average) in 6 seconds. Find the efficiency of the machine running as a motor and taking a current of 30 A at 200 V supply. The armature and field resistances are 0.3Ω and 200Ω, respectively.

OR
10. a) Describe Swinburne's test for DC motors? Explain why it is considered as economical method for testing DC shunt machines?
b) A field test of two DC series machines gives the following results: Motor armature current is 50 A at 500 V . Drop across motor field winding is 38 V . Generator armature current is 400 A at 400 V . Drop across the generator field is 37 V . The armature resistance of each machine is 0.25Ω. Find the efficiency of each machine.

Code: 4G233

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015
Electrical Circuits-I
(Electrical \& Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) State and Explain Kirchhoff's Laws
b) Find the value of ' R ' for the circuit shown in figure

OR
2. a) Find the current through 5Ω resistor for the circuit shown in figure

b) By means of an example explain the source transformation technique adopted in electric circuits

UNIT-II

3. a) Find the RMS Value and form factor of the following periodic wave shown in figure.

b) Draw the locus diagram for RL circuit with R varied from zero to infinity.
4. a) Determine the voltage drop across 4Ω resistor for the circuit shown in figure.

b) Define resonance frequency and half power frequency. Derive the expression
for band width of a series resonant circuit.
5. a) Derive the condition for maximum power transfer in DC circuits
b) Find the load impedance that draws maximum power and the amount of maximum power drawn for the circuit shown in figure.

OR
6. a) Find the voltage drop across 16Ω resistor using super position theorem for the circuit shown in figure

b) State and Explain compensation theorem

UNIT-IV

7. a) Express Z-parameters in terms of Y-parameters for a two-port network
b) Find $A B C D$ parameters for the two-port network shown in figure

OR
8. a) Find the combined network parameters for 2 two-port networks connected in parallel.

7M
b) Determine the impedance parameters for the two-port network shown in figure

UNIT-V
9. a) Derive the expression for coefficient of coupling for two mutually coupled coils.
b) Obtain the effective inductance of two mutually coupled coils connected in series aiding and opposition.

7M
OR
10. a) Draw the graph and obtain the basic cutset matrix for the circuit shown in figure

Code: 4G234

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015
Electromagnetic Fields
(Electrical \& Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

Abstract

1. a) Derive the expressions for the electric field intensity and potential at a point p which is situated ' h ' meter away from the disc along its axis. The disc is charged uniformly with a charge density of $\rho_{\mathrm{s}} \mathrm{c} / \mathrm{m}^{2}$?

Abstract

b) What is the highest possible potential of an isolated spherical conductor of radius 0.4 m ? Assume the strength of air is $60 \mathrm{kv} / \mathrm{cm}$?

OR

2. a) State and explain Gauss law?
b) Derive the equation for potential at a point inside a solid sphere having uniform volume charge density?

UNIT-II

3. a) Give the expression for capacitance of coaxial cable with two dielectrics?
b) The capacitance of a condenser formed by two parallel metal sheets, each $100 \mathrm{~cm}^{2}$ in area separated by a dielectric 2 mm thick is $2 \times 10^{-4} \mu \mathrm{f}$. A potential of 20 kv is applied. Find (i) electric flux (ii) potential gradient in kv/cm (iii) the relative permittivity of the material (iv) electric flux density?

OR

4. a) What is dipole? Derive the expression for potential due to a dipole?
b) In a material for which $\sigma=5 \mathrm{~s} / \mathrm{m}$ and $\varepsilon_{r}=1$, the electric field intensity is $\mathrm{E}=200 \sin 10^{5} \mathrm{t} \mathrm{v} / \mathrm{m}$, find the conduction and displacement current densities?

UNIT-III

5. a) Derive an expression for magnetic field intensity of any point on the axis of circular coil carrying current?
b) A solenoid with radius 2 cm is wound with 20 turns $/ \mathrm{cm}$ and carries 10 mA . Find H at the center of solenoid if the length is 10 cm . if all the turns of the solenoid were compressed in to a ring of radius 2 cm . what would be the magnetic field intensity at the center of the ring?

OR

6. a) Explain the vector magnetic potential and derive its expression? 7 M
b) If the vector potential A is given as $A=5\left(x^{2}+y^{2}+z^{2}\right) a_{x}$. Find out flux density? $7 M$

UNIT-IV

7. a) Derive an expression for force between two straight long parallel conductors
carrying currents in the same direction?
b) What is the maximum torque on a square loop of 1000 turns in a field of
intensity of 1 tesla? The loop has 10 cm sides and carries 3 A current. What
is the magnetic moment of the loop?
8. a) Derive an expression for inductance of solenoid? 7M
b) A 6000 turns solenoid is 3 m long and has a diameter 10 cm calculate the inductance of the solenoid and energy stored when a current of 12 A is flowing through the coil?

UNIT-V

9. a) State Maxwell's equations, and obtain them in differential form?
b) In a material for which $\sigma=10 \mathrm{~S} / \mathrm{m}$ and $\varepsilon_{r}=1$, the electric field intensity is $\mathrm{E}=$

200sin $10^{10} \mathrm{t} V / \mathrm{m}$. find the conduction and displacement current densities and
the frequency at which they have equal magnitudes?

OR
10. a) State and explain Faraday's laws of electromagnetic induction? 7M
b) A circular cross section conductor of radius 3 mm carries a current $\mathrm{i}_{\mathrm{c}}=5 \operatorname{Sin}\left(6 \times 10^{8}\right) \mu \mathrm{A}$ what is the amplitude of the displacement current density if $\sigma=40 \mathrm{~ms} / \mathrm{m}$ and $\varepsilon_{r}=1$?

