Hall Ticket Number :

Code: 4GC31

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Mathematics-II

(Common to CE & ME)

Max. Marks: 70 Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ********* **UNIT-I** 1. a) Reduce the Matrix $\begin{pmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{pmatrix}$ into Echelon form and hence find its Rank. b) Find the inverse of the matrix $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$ using Cayley- Hamilton theorem **OR**

- 2. a) Determine the values of λ for which the following set of equations may possess nontrivial solution. $3x + y - \lambda z = 0$, 4x - 2y - 3z = 0, $2\lambda x + 4y + \lambda z = 0$. For each permissible value of λ , determine the general solution.
 - b) Find the Eigen values and the corresponding Eigen vectors of the matrix $\begin{pmatrix} -2 & 5 \\ -1 & 4 \end{pmatrix}$

- 3. a) Find the real root of the equation $x \tan x + 1 = 0$, using Newton Raphson Method.
 - b) The velocity \boldsymbol{v} of the particle at a distance s from a point on its path is given the following table

	s(ft.)	0	10	20	30	40	50	60
ſ	v (ft.)	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft. by using Simpson's 1/3 rule.

OR

- 4. a) Using Regula falsi method, find the real root of the equation $2x \log_{10} x 6 = 0$ correct to three decimal places.
 - b) Apply Lagrange's method to find the value of f(x) when x = 10 from the given data.

Х	5	6	9	11
f(x)	12	13	14	16
	l	JNIT-I		

- 5. a) Using the Taylor's series method, solve $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 at x = 0.1, 0.2.
 - b) Using Runge-Kutta method of 4th order, find *y* for x = 0.2, given that $\frac{dy}{dx} = xy + y^2, y(0) = 1.$

OR

6. Using Milne's predictor-corrector method, find y(0.4), given that $\frac{dy}{dx} = 1 + xy_x y(0) = 2$. Find the initial values using Taylor's series method.

R-14

UNIT-IV

- 7. a) Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi x)^2$ in $0 < x < 2\pi$.
 - b) Solve the differential equation $4u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$, by the method of separation of variables

OR

- 8. a) Find the half-range cosine series for f(x) = x(2-x) in $0 \le x \le 2$. and deduce the value of $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \frac{1}{5^2} \cdots$
 - b) Form the Partial differential equation by eliminating the arbitrary function \emptyset from the relation $\emptyset(x^2 + y^2 + z^2, xyz) = 0$.

UNIT-V

9 a) Show that $f(z) = \frac{xy^2(x+iy)}{x^2+y^4}$, $z \neq 0$ and f(0) = 0 is not analytic at z = 0

although C-R equations are satisfied at the origin.

b) Use Cauchy's integral formula to evaluate $\iint_{c} \frac{z+4}{z^2+2z+5} dz$ where c is the circle |z+1|=1.

OR

10. a) Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic and find its harmonic Conjugate.

b) Use Cauchy's integral formula to evaluate $\iint_{c} \frac{\left(e^{z} + z \sinh z\right)}{\left(z - \pi i\right)^{2}} dz$ where c is the circle |z| = 4.

Hall ⁻	Ticke	et Number :													
Code	e: 4G	236	<u> </u>	1	1	1	1	1	1	1	1	L			R-14
	II	B. Tech. I	-Sem	este	er Reg	gula	ır Ex	ami	nat	ions	s Nc	v/D	ec 2	2015	
		Electric	al Eng	-		-					Ingi	inee	ering		
Max		vel.co. 70		(C	ommo	on to	ME,	, CSE	81)			т:		
-		arks: 70 <i>II five</i> units b	v cho	osino	a one	aue	stior	n fror	n ec	nch	unit	(5 x			3 Hours arks)
,	0. 0		, 0110	0011	9 0110	****	****				01111	107	•••	, 0,,,,	
						<u> </u>	NIT-I								
1.		State and ex	•												6M
	b)	A resistance resistors of									•				
		80 Watts wh							•					Circu	8M
						U	OF	2							
2.	a)	Obtain the	equiva	lent	inducta	ance	of t	hree	para	allel	conr	ecte	d ind	uctors	of
		value 10 mH	ł.												7M
	b)	A circuit cons											•		•
		are connected in series with a resistor of 15 ohm. If the current through the 15 ohm resistor is 3 A, find the current in the other resistors and supply voltage 7													15 7M
			10 0 7 1,			<u> </u>			1001	51010	unu	oupp	ly von	ugo	,
3.	a)	A 4 pole d.c	aener	ator i	s runn	C	_)	n. flı	ıx is	7 m	<i>w</i> b. n	umbe	er of s	lots
		A 4 pole d.c generator is running at 1500 rpm, flux is 7 mwb, number of slots is 52, conductors per slot is 20. Calculate the generated voltage.												7M	
	b)	Derive torqu	e equa	ation	of a do	mote	or.								7M
							OF	2							
4.	a)	Explain the s	•							otors					7M
	b)	Write about	Swinbu	urne':	s test o	C									7M
_						C	UNIT								
5.	a) b)	Derive the en	-		-	-			ner a	nd dr	aw it	s pha	sor dia	agram.	
	b)	Write about	various	5 1055	es in t	ransi	Orme OF								7M
6.	a)	What is volta	ade rec	nulati	on? Ev	nlair	-		nchr	onou	ıs im	neda	nce n	nethor	dof
0.	ц)	finding regul	• •	janati	онн <u></u>	.p.a.i		aroy		01100		pouu			7M
	b)	Explain torqu	ue slip	char	acteris	tics c	of a th	nree	ohas	e ind	luctio	on mo	otor.		7M
							UNIT	-IV							
7.	a)	Explain the o	operati	on of	bridge	e rect	ifier v	with r	eleva	ant d	iagra	ams.			8M
	b)	Write the ne	cessar	y cor	ditions	s for o	oscill	ators							6M
_							OF								
8.	a)	Explain the o	•						•						7M
	b)	Explain abou	ut ireqt	uency	respo	C			прш	er.					7M
0		What is daft	oction	one		C		-•							714
9.	a) b)	What is defle Explain abou			•	•		vant	dian	ramo	5				7M 7M
	0)			5010	iouin	9	OF		aray	and					7 191
10.	a)	List the appl	ication	s of (CRO.		-	-							6M
	b)	Write about				nd fre	quer	ncy m	ieasi	urem	ent ı	using	CRO		8M
						*	**								

Hall Ticket Number :] [D 1/
							K-14

Code: 4G531

II B. Tech. I-Semester Regular Examinations Nov/Dec 2015

Mechanics of Solids

(Mechanical Engineering)

Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70Marks)

UNIT-I

- 1. a) State clearly Hooke's Law.
 - b) A bar of 20 mm diameter is tested in tension. It is observed that when a load of 37.7 kN is applied ,the extension measured over a gauge length of 200 mm is 0.12 mm and contraction in diameter is 0.0036 mm. Find Poisson's ratio and elastic constants E,G,K.

OR

- 2. a) Define strain energy and Resilience.
 - A steel bar 20 mm diameter and 1 m long is freely suspended from a roof and is provided with a collar at the other end. If the modulus of elasticity is 2 X10⁵ and maximum permissible stress is 300 N/mm², Find
 - i) The maximum load which can fall from a height of 50 mm on the collar
 - ii) The maximum height from which a 600N load can fall on the collar. 12M

A simply supported beam of length 7 m and carrying a UDL of 10 kN/m for a distance of 3 m from the left end. Draw the shear force and Bending moment diagrams. Also calculate the maximum bending moment.

OR

 A beam 6 m long rests on two supports 5 m apart. The right end is overhanging by 1 m. The beam carries a uniformly distributed load of 1.5 kN/m over the entire length of the beam. Draw S.F. and B.M. diagram and find the amount and position of maximum bending moment.

- 5. a) State the assumptions made in theory of simple bending?
 - b) A circular pipe of external diameter 70 mm and thickness 8 mm is used as a simply supported beam over an effective span 2.5 m. Find the maximum concentrated load that can applied at the center of the span if permissible stress in tube is 150 N/mm².

OR

An I-sections, with rectangular ends, has the following dimensions:
 Flanges = 150 mm X 20 mm, Web = 300 mm X 10 mm.
 Find the maximum shearing stress developed in the beam for a shear force of 50 kN.

2M

12M

2M

4M

Page 2 of 2

UNIT-IV

Derive an expression for max deflections for a simply supported beam subjected to UDL by double integration method.

OR

8. A hollow circular shaft 200 mm external diameter and thickness of metal 25 mm is transmitting power at 200 rpm. The angle of twist over a length of 2 m was found to be 0.5 degrees. Calculate the power transmitted and the maximum shear stress induced in the section. Take modulus of rigidity of material as 84 kN/mm².

UNIT-V

9. A thin cylindrical shell, 2m long has 200 mm diameter and thickness of metal 10 mm. It is filled completely with fluid at atmospheric pressure. If an additional 25000 mm³ fluid is pumped in, find the pressure developed and hoop stress developed. Find also the changes in diameter and length. Take $E=2 \times 10^5$ N/mm² and $\mu=0.3$.

OR

10. A hollow cast from iron whose outside diameter is 200 mm and has a thickness of 20 mm is 4.5 m long and is fixed at both ends. Calculate the safe load by Rankine's formulae using a factor of safety of 2.5.Find the ratio of Euler's to Rankine's loads. Take $E=1X10^5$ N/mm² and Rankines constant=1/1600 for both ends pinned case and f_c=550 N/mm².

14M

14M

14M

14M

• •	40	R-14									
Code:	4G!	532									
	II	B. Tech. I-Semester Regular Examinations Nov/Dec 2015									
		Metallurgy & Material Science (Mechanical Engineering)									
Max.	Mar										
Answe	er all	five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)									
		******** UNIT-I									
1.		List the various types of bonds occurring in a crystal. Discuss the metallic bond and its characteristics									
		OR									
2.	a)	What is the necessity of alloying?									
	b)	Write a note on intermediate phases.									
		UNIT-II									
3.		Define Eutectic systems. Explain about equilibrium cooling and heating of alloys.									
		OR									
4.		What is equilibrium diagram? State its importance and objectives. How is equilibrium diagrams classified?									
5.		Explain micro structure, properties and uses of White cast iron									
		OR									
6.		Explain the structure and properties of plain carbon steels and its applications.									
7.	a)	State the objectives of annealing.									
	b)	Explain briefly									
		i) Full annealing.									
		ii) Isothermal annealing									
_		OR									
8.	a)	What is age hardening treatment?									
	b)	Describe briefly Nitriding surface hardening.									
9.		Give the classification of composites and explain any one method of manufacture of composites?									
		OR									
10.		Explain the Electric furnace process for steel making with neat sketch. Also mention its merits and demerits.									

Hall Ticket Number :

Hall	Ticke	et Number : R-14												
Code: 4G533														
II B. Tech. I-Semester Regular Examinations Nov/Dec 2015														
		Basic Thermodynamics (Mechanical Engineering)												
Мах	. Mc	arks: 70 Time: 3 Hou	rs											
Answ	er a	Ill five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)												
		******** UNIT-I												
1. a) Distinguish between Intensive and extensive properties with examples														
	b)	If the temperature scale is graduated according to the equation $t = 100 + 3t_c$ where												
		t is the temperature reading on the scale and $t_{\rm c}$ is Celsius temperature. Find												
		(i) freezing and boiling point of the thermometric substance and	014											
		 ii) The absolute temperature corresponding to 200 temperature reading on the scale. OR 	8M											
2.	a)	Show that heat is a path function and not a property of the system	6M											
۷.	b)		0101											
	2)	is expanded at constant pressure to 0.084 m ³ . A polytropic process with												
		n = 1.50 is then carried out, followed by a constant temperature process which												
		completes a cycle. All the processes are reversible. i) Sketch the cycle in the p-v and T-s plane. ii) Find the heat received and heat rejected in the cycle,												
		and iii) find the efficiency of the cycle.	8M											
		UNIT-II												
3.	a)	Demonstrate using the second law, that free expansion is irreversible	6M											
	b)	A block of iron weighing 100 kg and having a temperature of 100° C is												
		immersed in 50 kg of water at a temperature of 20°C. What will be the change												
		of entropy of combined system of iron and water? Specific heats of iron and water are 0.45 and 4.18 kJ/kg K respectively.	8M											
		OR												
4.	a)	Derive an expression for the availability of an open system.	6M											
	b)	Using an engine of 30% thermal efficiency to drive a refrigerator having a COP												
		of 5, what is the heat input into the engine for each MJ removed from the cold												
		body by the refrigerator?	8M											
5.	2)	UNIT-III What is steam quality? Develop relations for specific volume, enthalpy and												
5.	a)	internal energy for two-phase mixture.	6M											
	b)	A vessel containing 5 kg of steam at 8 bar and 250°C is cooled by pouring												
		water over the outer surface, till the inside pressure falls to 5 bar. Calculate												
		i) the final state of the steam ii) heat loss iii) loss of internal energy.	8M											
		OR												

- 6. a) Explain about critical point of steam. Why does the fusion line for water have negative slope?
 - b) 10 kg of water at 45°C is heated at a constant pressure of 10 bar until it becomes superheated vapour at 300°C. Find the change in volume, enthalpy, internal energy and entropy.

6M

8M

a)	Explain the generalized compressibility chart and explain its significance.	6M
b)	A gas mixture consists of 0.4 kg CO, 1.1 kg of CO $_2$ and 1.5 kg of N $_2$. Determine	
	(i) Mass fraction of each component.	
	(ii) Mole fraction of each component.	
	(iii) Average molar mass of the mixture.	
	(iv) Gas constant of the mixture.	8M
	OR	
a)	State Dalton's law of additive pressure	6M
b)	A gas mixture consists of 60% N_2 and 40% CO_2 by mole basis. Determine the gravimetric analysis of the mixture analysis of the mixture.	8M
	UNIT-V	
a)	Derive an expression for the thermal efficiency of Diesel cycle and draw P-V & T-S diagrams.	6M
b)	An air standard diesel cycle has a compression ratio of 16. The pressure at the beginning of compression stroke is 1 bar and the temperature is 25°C. The maximum temperature is 1400°C. Determine the thermal efficiency and mean	
	effective pressure for this cycle. Take γ =1.4.	8M
	OR	
a)	Compare Otto, Diesel & Dual cycles on P-V diagram for the same maximum pressure & temperature.	6M
b)	A 4-stroke cylinder Diesel engine has a compression ratio of 20:1 and expansion ratio of 10:1. Find the cut-off ratio and air standard efficiency.	8M
	 a) b) a) b) a) a) 	 a) Explain the generalized compressibility chart and explain its significance. b) A gas mixture consists of 0.4 kg CO, 1.1 kg of CO 2 and 1.5 kg of N 2. Determine (i) Mass fraction of each component. (ii) Mole fraction of each component. (iii) Average molar mass of the mixture. (iv) Gas constant of the mixture. a) State Dalton's law of additive pressure b) A gas mixture consists of 60% N2 and 40% CO2 by mole basis. Determine the gravimetric analysis of the mixture analysis of the mixture. UNIT-V a) Derive an expression for the thermal efficiency of Diesel cycle and draw P-V & T-S diagrams. b) An air standard diesel cycle has a compression ratio of 16. The pressure at the beginning of compression stroke is 1 bar and the temperature is 25°C. The maximum temperature is 1400°C. Determine the thermal efficiency and mean effective pressure for this cycle. Take γ=1.4. OR a) Compare Otto, Diesel & Dual cycles on P-V diagram for the same maximum pressure & temperature. b) A 4-stroke cylinder Diesel engine has a compression ratio of 20:1 and

Hall Ticl	ket Numbe	er :																
Code: 40	534														R-14	•		
II B. Tech. I-Semester Regular Examinations Nov/Dec 2015 Machine Drawing																		
				()						-								
Max. Ma	arks: 70			()	Mechanical Engineering)										Time: 4 Hours			
							Sect	ion-							2 X	4 = 8	M	
1.	Draw the c	conve	entio	nal r	epres	senta	tion	of the	e folle	owing	g							
	a) Asbestos																	
	b) Gla	ISS														4	M	
							-)R										
2.	Draw the o				•		tion	of the	e foll	owing	g							
	a) Ext b) Spl				ed Sc	rew										1	M	
	b) Spi	meu	Sha	11												4	.1.11	
3.	Show with	an e	exam	iple t	he fo	llowi	ng di	men	sionii	ng								
	a) Co-	-ordir	nate	dime	ensio	ning	-			-								
	b) Din	nensi	ionin	g Ta	pere	d fea	tures	5								4	M	
							C	D R										
4.	Draw the t				with	pitch	1 20n	nm										
	,	tric th														Л	N /	
	b) Acr	ne tr	read	J			6	ectio	n II							4	M	
					Ans	wer				e fo	lowi	na			2 X 10	= 20	M	
5.	Draw sect	ional	l fror	nt vie			-					-	olina f	oras				
	diameter 2									-1		1				10	M	
	Draw the H threaded b		-			bolt	with	a nu	t and	was	her i	n pos	sition f	or rig	ht hanc	10 10	M	
	Draw the s to join plat						top	view	of th	e do	uble	rivet	ed zig	-zag I	ap joint	t 10	M	

Section-III Compulsory Question Assembly Drawing

1x42=42 Marks

8. Details of a screw jack are shown in figure, assemble all the parts and drew it sectional front view.

