Hall Ticket Number :										

II B.Tech. I Semester Regular Examinations November 2016
 Fluid Mechanics and Hydraulic Machines

(Electrical \& Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the Engineering Significance of dimensions \& units in fluid mechanics
b) What are the different properties of rigid carbon tetrachloride at $20^{\circ} \mathrm{C}$ has a viscosity of $0.000967 \mathrm{NS} / \mathrm{m}^{2}$. What shear stress is required to deform this fluid at a strain rate of 5000 ?
2. a) State the Newton's law of viscosity and give examples of its applications.
b) Define the equation of continuity. Obtain an expression for the continuity equation for a three dimensional flow.

UNIT-II

3. a) What is hydro dynamics? What are the forces that are considered in solving the problems on hydrodynamics?
b) Derive an equation to measure the quantity of water flowing through a venturimeter.

OR
4. a) What are the different energies of a moving fluid? Explain each one of them.
b) Water under pressure of $3.924 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$ is flouring through a 0.3 m pie at the rate of 0.25 cumecs. If the is bent by 135°, find the magnitude and direction of the resultant force on the bend.

UNIT-III

5. a) Define the term impact of jet write its application.
b) A free jet moving with a velocity V strikes normally on a series of flat plates moving with a velocity of u and mounted radially on the periphery of a wheel. Determine the efficiency of the plates.

OR

6. a) What is Hydroelectric power plant? How can you classify the power plants?
b) A jet of water 15 cm diameter strikes of the centre of a smooth semi spherical vane. The velocity of the jet is $15 \mathrm{~m} / \mathrm{sec}$. Find the through if the vane moves at a velocity of $5 \mathrm{~m} / \mathrm{sec}$.

UNIT-IV

7. a) Write brief note on the classification of hydraulic turbines.
b) A Pelton wheel working under a head of 500 m . Produces $13,000 \mathrm{~kW}$ at 429 rpm . If the efficiency of the wheel is 85%. Determine (i) discharge of the turbine (ii) diameter of the wheel (iii) diameter of the nozzle.

OR

8. a) Define the terms uni power unit speed, and unit discharge with reference to a hydraulic turbine.
b) A turbine develops $10,000 \mathrm{~kW}$ under a head of 25 m at 135 rpm . What is the specific speed? What would be its normal speed and output under a head of 20 m .?

UNIT-V

9. a) Define the terms suction head, delivery head static head and manometric head.
b) A centrifugal pump has external / and internal impeller diameter as 600 mm and 300 mm respectively. The vane angle at inlet and outlet and 30° and 45° respectively. If the water enters the impeller at $2.5 \mathrm{~m} / \mathrm{sec}$. Find the (i) speed of the impeller in rpm and (ii) work done per kg of water.

OR
10. a) Explain the term slip with reference to reciprocating pump.
b) Derive an expression for the head lost due to friction in the delivery pipe of a reciprocating pump with and without an air vessel.

Code: 5GC32

II B.Tech. I Semester Regular Examinations November 2016

Mathematical Methods-III

(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Let A be a $m \times n$ matrix, then prove that $\rho(A)=\rho\left(A^{T}\right)$.
b) Solve the system of equations: $x_{1}-x_{2}+x_{3}+x_{4}=2 ; x_{1}+x_{2}-x_{3}+x_{4}=-4 ; x_{1}+x_{2}+x_{3}-x_{4}=4$; $x_{1}+x_{2}+x_{3}+x_{4}=0$.

OR

2. a) Determine the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$
b) State and prove the Cayley Hamilton theorem.

UNIT-II

3. a) Show that the Regula-Falsi method has super linear convergence.
b) Employ Taylor's method to obtain appropriate value of y at $x=0.2$ for the differential equation $\frac{d y}{d x}=2 x+3 e^{x}, y(0)=0$. Compare the numerical solution obtained with the exact solution.

OR

4. a) Using the bisection method, find a real root of the equation $\cos x=x e^{x}$ correct to three decimal places.
b) Apply fourth order Runge-Kutta method to $\frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1$ to determine $y(0.1)$ correct to four decimal places.

UNIT-III

5. a) From the following table, estimate the number of students who obtained marks between 40 and 45 using Newton's interpolation formula.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

b) Find $f^{\prime}(7.5)$ from the following table:

x	7.47	7.48	7.49	7.50	7.51	7.52	7.53
$f(x)$	0.193	0.195	0.198	0.201	0.203	0.206	0.208

OR

6. a) One entry in the following table is incorrect and y is a cubic polynomial in x. Use the difference table to locate and correct the error.

x	0	1	2	3	4	5	6	7
y	25	21	18	18	27	45	76	123

b) Velocity V of a particle at distances from a point m its linear path is given by the following table. Estimate the time taken by the particle to travels the distance of 20 meters.

$\mathrm{S}(\mathrm{m})$	0	2.5	5.0	7.5	10.0	12.5	15	17.5	20
$\mathrm{~V}(\mathrm{~m} / \mathrm{sec})$	16	19	21	22	20	17	3	11	9

UNIT-IV

7. a) The pressure and volume of a gas are related by the equation $P V^{\gamma}=k, \gamma$ and k being constants. Fit this equation to the following set of observations

$P\left(\mathrm{~kg} / \mathrm{cm}^{2}\right)$	0.5	1.0	1.5	2.0	2.5	3.0
V (liters)	1.62	1.00	0.75	0.62	0.52	0.46

b) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=\left(z^{2}-x y\right)$.

OR

8. a) Using the method of separation of variables, solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u$ subject to the condition $u=0$ and $\frac{\partial u}{\partial y}=1+e^{-3 y}$, when $x=0$ for all values of y.
b) Obtain the least square fit of the form $f(t)=a e^{-3 t}+b e^{-2 t}$ for the following data

t	0.1	0.2	0.3	0.4
$f(t)$	0.26	0.58	0.44	0.35

UNIT-V

9. a) Obtain a half range cosine series for $f(x)=\left\{\begin{array}{ll}k x, & 0 \leq x \leq l / 2 \\ k(l-x), & l / 2 \leq x \leq l\end{array}\right.$. Deduce the sum of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \cdots \cdots \infty$.
b) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1-x^{2}, & |x| \leq 1 \\ 0, & |x| \geq 1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos x / 2 d x$

OR

10. If $f(x)=\left\{\begin{array}{ll}0, & -\pi \leq x \leq 0 \\ \sin x, & 0 \leq x \leq \pi\end{array}\right.$, Prove that $f(x)=\frac{1}{\pi}+\frac{\sin x}{2}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n x}{4 n^{2}-1}$. Hence show that $\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\cdots \cdots \infty=\frac{1}{4}(\pi-2)$

II B.Tech. I Semester Regular Examinations November 2016

Switching Theory and Logic Design

(Electrical and Electronics Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) I. Simplify the following expressions
i) $A^{1}\left(B^{1}+C\right)$
ii) $\left.A^{1}+B^{1}+A B C^{1}\right)$
iii) $x y+w x y z^{1}+x^{1} y$
II. What are error detecting and error correcting codes 8M
b) i) A 7 bit hamming code is transmitted through a noisy channel. Find the error assuming a single error has occurred. The given message is 1010101
ii) Find the 9's and 10's complement of (92466) ${ }_{10}$

OR

2. a) i) Find the 1 's and 2's complement of $(0111001)_{2}$
ii) State and prove Demorgan's theorem
b) i) State any four properties of XOR gate
ii) What are Universal gates? Implement NOT, AND \& OR gates using Universal gates

UNIT-II

3. a) i) Simplify using Boolean Algebra and implement using Basic gates

$$
X Y Z+X Y Z^{1}+X Y^{1} Z+X^{1} Y^{1} Z+X^{1} Y Z^{1}
$$

ii) Demonstrate by means of truth table the validity of
I. Associative Law
II. Commutative Law
b) i) Prove that OR - AND Network is equal to NOR - NOR gate.
ii) Simplify using K map $F(A, B, C, D)=\sum(0,2,4,5,6,7,8,10,13,15)$

OR
4. a) i) Show that $A B C+A B C^{1}+A B^{1} C+A^{1} B^{1} C+A^{1} B C^{1}=B^{1} C+A B+A^{1} B C^{1}$
ii) Simplify using binary method $F=\pi M(0,1,2,4,5,6,9,11,12,13,14,15)$. Implement the same using basic gates.

8M
b) i) Express the Boolean $F=A^{1}\left(B+C^{1}\right)$ as a product of max - terms
ii) What is K map? State its advantages and limitations.

UNIT-III

5. a) i) Draw the Block diagram of 3 to 8 decoder? Implement the following function using decoder $F=\sum(0,2,4,5,6,7)$
ii) What is magnitude comparator? Implement a 2 bit magnitude comparator using Basic gates
b) Implement the following expressions using PLA
$F_{1}=\sum \mathrm{m}(1,2,4,6,7), F_{2}=\sum \mathrm{m}(0,1,2,4,6)$

OR

6. a) i) Explain a 4 bit parallel adder with an example.
ii) What is an encoder? Explain with circuit diagram a 8 line to 3 line priority encoder.
b) i) Draw the circuit of 3 bit fast adder and Explain
ii) Implement the following expressions using PROM $\mathrm{F}_{1}=\sum \mathrm{m}(0,1,2,4,6,7), \mathrm{F}_{2}=\sum \mathrm{m}(0,1,2,4,6$,

Abstract

UNIT-IV

7. a) i) Convert SR Flip-Flop into D Flip-Flop.
ii) Design a mod-12 synchronous counter using T Flip-Flop. 8M
b) i) Compare combinational and sequential circuits.
ii) What is race around condition? How it can be eliminated

OR
8. a) i) Design a four bit Johnson counter. Explain with example.
ii) Write the excitation table of JK \& T Flip-Flops
b) i) Explain with truth table SR Flip-Flop and JK Flip-Flop
ii) Design a 4 bit synchronous binary counter using JK Flip-Flop

UNIT-V

9. a) i) What are the limitations of FSM
ii) Define the state equivalence and machine equivalence with reference to sequential machines. Reduce the state table below.

PS	NS / Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
F	$\mathrm{~F} \mid 0$	$\mathrm{~B} \mid 0$
B	$\mathrm{D} \mid 0$	$\mathrm{C} \mid 0$
C	$\mathrm{F} \mid 0$	$\mathrm{E} \mid 0$
D	$\mathrm{G} \mid 1$	$\mathrm{~A} \mid 0$
E	$\mathrm{D} \mid 0$	$\mathrm{C} \mid 0$
F	$\mathrm{~F} \mid 1$	$\mathrm{~B} \mid 1$
G	$\mathrm{G} \mid 0$	$\mathrm{G} \mid 0$
H	$\mathrm{G} \mid 1$	$\mathrm{~A} \mid 0$

b) i) State Mealy and Moore machines give their comparisons
ii) Discuss the various blocks of ASM chart

OR

10. a) What is Mealy and Moore Machines? Give example.
b) Convert the following Mealy Machine into Moore Machine

PS	NS, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
C	$\mathrm{C}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{~A}, 1$	$\mathrm{D}, 0$
C	$\mathrm{B}, 1$	$\mathrm{~A}, 1$
D	$\mathrm{D}, 1$	$\mathrm{C}, 0$

Hall Ticket Number :

Code: 5G233
II B.Tech. I Semester Regular Examinations November 2016
Electrical Circuits-I
(Electrical \& Electronics Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State and explain Kirchoff's laws with examples and limitations
b) A heater element takes 8 MW power when connected to the power mains. This element is redrawn such that the length of the element is doubled. Determine the power consumed when connected to the same power mains.

OR

2. a) Prove that internal resistances of voltage source and current source are same during transformation
b) Find the power dissipated in the resistor R in the ladder network shown in the figure1.

UNIT-II
3. a) Explain the significance of operator-j in alternating circuits.
b) A series circuit having pure resistance of 40 ,pure inductance of 50 mH and a capacitor is connected across a $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. This series combination circuit draws 10A.Calculate
(i) Power factor of the circuit.
(ii) Capacitance in F

OR

4. a) Derive and expression for resonant frequency, band width of a series RLC circuit.
b) A series RLC series circuit has $R=1000 \quad, \mathrm{~L}=100 \mathrm{mH}, \mathrm{C}=10 \quad \mathrm{~F}$. If a voltage of 100 V is applied across the series combination the determine
(i) Resonant frequency
(ii) Q-factor
(iii) Half power frequencies

UNIT-III

5. a) State and explain Tellegen's Theorem. 3M
b) A bridge network formed by 4 arms is as follows. $\mathrm{AB}=2 \quad, \mathrm{BC}=3 \quad, \mathrm{CD}=4$
, $\mathrm{DA}=5$.A 6 resistance is connected between B and D.A battery source of 9 V is connected with internal resistance of 1 between A and C such that A is positive and C is negative. Calculate current through 6 resistance by

(i) Norton's Theorem

(ii) Thevenin's Theorem

OR

6. a) State and explain Compensation Theorem.
b) State and prove maximum power transfer theorem for a passive network connected to an active network consisting of current and voltage sources and linear bilateral elements, when the passive network load consists of
(i) A variable resistance only
(ii) A variable resistance and a variable reactance

What is the transmission efficiency in case (ii)

UNIT-IV

7. a) Derive Impedance parameters of a two port network. 5M
b) Determine the hybrid parameters with the following data.
(i) With the output terminals shorted

$$
\mathrm{V}_{1}=25 \mathrm{~V}, \mathrm{l}_{1}=1 \mathrm{~A}, \mathrm{l}_{2}=2 \mathrm{~A}
$$

(ii) With the output terminals opened

$$
\mathrm{V}_{1}=10 \mathrm{~V}, \mathrm{~V}_{2}=50 \mathrm{~V}, \mathrm{I}_{2}=2 \mathrm{~A}
$$

OR

8. a) Derive Admittance parameters of a two port network. 5M
b) Prove that hybrid parameters will not exist for a two port network when $Z_{22}=0 . \quad 9 \mathrm{M}$

UNIT-V

9. a) What is the analogy between electric and magnetic circuits?
b) A steel ring of 180 cm mean diameter has a cross sectional area of $250 \mathrm{~mm}^{2}$. Flux developed in the ring is 250 Wb when a 4000 turns coil carries certain current.
Calculate (i) MMF required (ii) Reluctance (iii) Current in the coil. Assume relative permeability of steel is 1100 .

OR

10. a) State and explain the principle of duality and explain the graphical method to draw dual network?
b) What is complete incidence matrix? How is reduced incidence matrix obtained from it? Explain with suitable example.

II B.Tech. I Semester Regular Examinations November 2016
 Electromagnetic Fields

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State and derive Columb's law of force between any two point charges?
b) A 2 mc positive charge is located in vacuum at $P_{1}(3,-2,-4)$ and $5 \mu \mathrm{c}$ negative charge at $P_{2}(1,-4$, 2). (a) Find the vector force on the negative charge. (b) What is the magnitude of the force on the charge at P_{1} ?
2. a) Define potential and potential difference?
b) Given thotential c flux density differenr ${ }^{2}$, or ee space.
(a) Find ${ }^{\text {e electri }} 2, \theta=25^{0} \quad \bar{D}=0.3$ ar $n c / m^{2}$ in fl_{1}
(a) Find ${ }_{\bar{E}}$ at $\mathrm{r}=2, \theta=25^{\circ}, \quad=50^{\circ}$.
(b) Find the total charge within the sphere $r=3$?

UNIT-II

3. a) What is dipole? Derive the expression for potential due to a dipole?
b) A dipole of moment vo the expression cated at origin in free space
i) Find E at $P\left(r=4, \theta^{\rho}=20^{\circ}, m=0 / m 0 / 0^{\circ}\right.$ is lo.

OR
4. a) Derive the expression for capacitance between co-axial cylinders?
b) Explain the continuity equation and point form of continuity equation? 7M

UNIT-III

5. a) State and explain Biot -Savarts law?

7M
b) Obtain an expression for the magnetic field intensity due to infinitely long current carrying conductor?
6. a) State and explain Ampere's circuital law?

7M
b) A circular loop located on $x^{2}+y^{2}=9$ carries a current of 12 A . Determine H at $(0,0,6)$ and $(0,0$, $-6)$. Take the direction of current in anti-clockwise direction?

UNIT-IV

7. a) Derive Lorentz force equation?
b) An infinite filamentary conducitor on $t^{\text {ne }} \mathrm{Z}$-axis carries a current of 2 A in the . the magnitude of the force on 1 inch length of the conductor in the field
a) $\bar{B}=0.1 \dot{q}_{x}-0.2 a_{z} \mathrm{wb} / \mathrm{m}^{2}$ b) $\overline{\bar{B}}=0.3 \dot{q}_{x}-0.4 \mathrm{a}_{\mathrm{y}} \mathrm{wb} / \mathrm{m}^{2}$?

OR
8. a) State and explain the Magnetic boundary conditions?
b) Calculate the inductance of a solenoid 8 cm in length, 2 cm in radius having $\mathrm{r}=100$ and carrying 800 turns of wire?

UNIT-V

9. a) Explain the concept of displacement current?

b) Distinguish clearly the dynamically induced emf and statically induced emf. Explain with neat
sketches?
10. Write the Maxwell's equations for harmonically varying fields?

