\square

Code: 5GC31

II B.Tech. I Semester Regular Examinations November 2016

Engineering Mathematics -III

(Common to CE \& ME)

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) Find the rank of the matrix $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$ by reducing it into Row-

Echelon form.
b) Test for consistency and solve the system of equations:
$2 x+6 y+11=0, \quad 6 x+20 y-6 z+3=0, \quad 6 y-18 z+1=0$
OR
2. a) Verify Cayley-Hamilton theorem for $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and express the matrix polynomial $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ as linear polynomial in A.
b) Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$.

UNIT-II

3. a) Using Regula-falsi method, find the root of the equation $x e^{x}=2$ correct to three decimal places.
b) Apply Lagrange's interpolation scheme to estimate the value of x when $y=15$ for the following data.

x	5	6	9	11
y	12	13	14	16

4. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin x d x$ using i) Trapezoidal rule ii) simpson's $3 / 8$ rule.
(Divide the range into 10 equal parts)

UNIT-III

5. Use Modified Euler's method to find an approximate value of y when $x=1$, given that $\frac{d y}{d x}=x+y, y(0)=0$ (choose step length $h=0.2$).

OR
6. Apply $4^{\text {th }}$ order Runge-Kutta method to find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x} y(0)=1$ insteps of 0.1

UNIT-IV

7. Obtain Fourier cosine series and sine series of a function $f(x)=x, 0 \leq x \leq \pi$.

Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+---=\frac{\pi^{2}}{8}$.
8. a) Form the partial differential equation by eliminating arbitrary function F from $F\left(x y+z^{2}, x+y+z\right)=0$.
b) Solve $\frac{\partial^{3} z}{\partial x^{2} \partial y}-\cos (2 x+3 y)=0$ by the method of separation of variables.

UNIT-V

9. a) If $f(z)$ is an analytic function of z, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
b) Determine the analytic function whose real part is $y+e^{x} \cos y$.

OR

10. Evaluate $\oint_{c} \frac{e^{-3 \pi z}}{2 z+i} d z$, where c the boundary of the square with the vertices ± 1 and $\pm i$.
\square
Hall Ticket Number :
Code: 5G534

R-15

II B.Tech. I Semester Regular Examinations November 2016 Manufacturing Technology
(Mechanical Engineering)
Max. Marks: $70 \quad$ Time: 3 Ho
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) What allowances are provided for patterns of green sand moulding. 7M
b) Explain functions of various gating system elements. 7 M
OR
2. a) Compare hot chamber die casting \&cold chamber die casting. 7M
b) Describe shell moulding .and state its suitability, applications. 7M
UNIT-II
3. a) Explain various flames used in oxy-acetylene gas welding 7M
b) Explain Thermit welding process state its advantages. 7M
OR
4. a) Compare Soldering, Brazing ,and Welding. 7M
b) Compare TIG\&MIG welding. 7M

UNIT-III

5. a) Compare hot working \&cold working. State few products made for each of the
processes.
b) Explain hot and cold spinning. 7M
OR
6. a) Describe two high, four high roll mills. 7M
b) Describe bending \& forming operation. 7M
UNIT-IV
7. a) Explain extrusion process and discuss forward, backward, impact extrusion
processes
b) Explain rotary forging and state its applications and advantages. 7M
OR
8. a) Describe coining and embossing process of forming. 7M
b) Describe few defects of rolled products and state their remedies. 7M

UNIT-V

9. a) Compare thermo plastics and thermo setting plastics. 7M
b) Explain Injection moulding process and applications. 7M
OR
10. a) Explain blow moulding process and applications 7M
b) Explain compression moulding process and applications 7M

II B.Tech. I Semester Regular Examinations November 2016
Mechanics of Solids
(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) ********

UNIT-I

1. a) A tensile test was conducted on a specimen. The following data was obtained from the test: Diameter $=22 \mathrm{~mm}$; Gauge length of extensor meter $=200 \mathrm{~mm}$; Least count of extensor meter $=0.001 \mathrm{~mm}$; at a load of 22 kN , extensor meter reading $=60$; at a load of 36 kN , extensor meter reading $=94$; Yield load $=95 \mathrm{kN}$; Maximum load=157kN; Diameter at neck=15mm; Final length over 100 mm original length=132 mm. Find Young's Modulus, yield stress, ultimate stress, percentage elongation and percentage reduction in area.
b) Draw the stress-strain diagram of mild steel specimen subjected to tensile test and mark the salient points.

OR

2. a) What are the three types of stresses? Give the relationship between them.
b) The composite bar shown in Fig. 1 is subjected to a tensile force of 30 kN . The extension observed is 0.372 mm . Find the Young's modulus of brass of 20 mm diameter. If Young's modulus of steel of 30 mm diameter is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig. 1

UNIT-II

3. Draw the shear force and bending moment diagrams and find the maximum bending moment for the beam shown in Fig.2.

Fig. 2

OR

4. Draw the shear force and bending moment diagram for the beam and locate the point of contraflexure if any for the beam shown in Fig.3.

b) A rectangular beam 300 mm deep is simply supported over the span of 4 m . Determine the uniformly distributed load per meter which the beam may carry, if the bending stress should not exceed $120 \mathrm{~N} . \mathrm{mm}^{2}$. Take $\mathrm{I}=8 \times 10^{6} \mathrm{~mm}^{4}$.

OR

6. a) What is shear center? Mention its practical significance.
b) An I section beam $350 \times 150 \mathrm{~mm}$ has a web thickness of 10 mm and a flange thickness of 20 mm . If the shear force acting on a section is 40 kN , find the maximum shear stress developed in the I section.

UNIT-IV

7. A simply supported beam of length 7 m is supported at its ends. It is carrying two point loads of 5 kN at a distance of 1 m and 2 m respectively from the left end of the beam. Determine the slope at the support points, the deflection under the applied loads and the position and magnitude of maximum deflection. Take E as 90 GPa and I as $18 \times 10^{-6} \mathrm{~m}^{4}$.

OR

8. a) Write the assumptions made in torsion equation.
b) Find the angle of twist per metre length of a hollow shaft of 100 mm external diameter and 60 mm internal diameter, if the shear stress is not to exceed 35 MPa . Take modulus of rigidity $\mathrm{G}=85 \mathrm{GPa}$.

UNIT-V

9. A closed cylindrical vessel made of steel plates 4 mm thick, carries fluid under pressure of $3.5 \mathrm{~N} / \mathrm{mm}^{2}$. The diameter of the cylinder is 27 cm and length is 77 cm . Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change in diameter, length and volume of the cylinder. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.3$.

OR

10. Find the Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm thick. Take length of the column as 2.3 m and hinged at its both ends. Take $\mathrm{E}=205 \mathrm{kN} / \mathrm{mm}^{2}$. Also determine the crippling load by Rankine's formula using $f_{c}=335 \mathrm{~N} / \mathrm{mm}^{2}$ and $a=1 / 7500$.
\square

Code: 5G532

R-15

II B.Tech. I Semester Regular Examinations November 2016 Metallurgy \& Material Science

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) *********

UNIT-I

1. What are the three basic methods of grain size measurement recommended by ASTM? Explain the procedure in each method briefly. Why is the estimate of grain size by any of the above methods not a precise one?

OR

2. What are solid solutions? What is their classification? Explain the Hume
Rothery rules that decide the solid solubility?

UNIT-II

3. Sketch the Iron carbide diagram to scale and label the details. What are the important structures observed and their characteristics? Write down the invariant reactions observed in the diagram.

OR

4. a) Explain the solidification of a eutectic system taking three typical compositions.
b) Outline the properties and applications of Eutectic alloys.
UNIT-III
5. What are nodular cast Irons? How are they produced? Compare Nodular Cast iron with Grey Cast Iron as regards properties and applications.

OR

6. What are bronzes? What are its types? Write important notes on tin bronzes. Why is lead added to tin bronzes?

UNIT-IV

7. a) What are ferritic and austenitic stabilizers? What is their effect on eutectoid
temperature and composition?
b) Explain case hardening of steels. 7 M

OR

8. Write notes on
i) Cryogenic treatment
ii) Age hardening
iii) Normalizing.

UNIT-V

9. Write about the acid Bessemer process of steel making. Include in tour answer,
the selection of Pig iron and the chemical reactions that are observed.

OR

10. a) What the benefits realized by use of composites? 7 M
b) Explain any two methods of manufacture of composite components.

II B.Tech. I Semester Regular Examinations November 2016 Basic Thermodynamics

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A fluid flows through a steady-flow open system at the rate of $3 \mathrm{~kg} / \mathrm{s}$. At the system inlet, the pressure, velocity, internal energy and specific volume are $5 \mathrm{~atm}, 150 \mathrm{~m} / \mathrm{s}, 2000 \mathrm{~kJ} / \mathrm{kg}$ and 0.4 $\mathrm{m}^{3} / \mathrm{kg}$ respectively. The fluid leaves the system with $1.2 \mathrm{~atm}, 80 \mathrm{~m} / \mathrm{s}$, internal energy of 1300 $\mathrm{kJ} / \mathrm{kg}$ and specific volume of $1.1 \mathrm{~m}^{3} / \mathrm{kg}$. The fluid loses $25 \mathrm{~kJ} / \mathrm{kg}$ through heat transfer during the process. Determine the power output of the system, neglecting the change in potential energy
b) Write short notes on the following.
i. Zeroth law and its application
ii. Thermodynamic temperature scale
iii. Law of corresponding states

OR

2. a) A turbine operates under steady flow conditions, receiving steam at the following state: pressure 1.2 MPa , temperature $188^{\circ} \mathrm{C}$, enthalpy $2785 \mathrm{~kJ} / \mathrm{kg}$, velocity $33.3 \mathrm{~m} / \mathrm{s}$ and elevation 3 m . The steam leaves the turbine at the following state: pressure 20 kPa , enthalpy $2512 \mathrm{~kJ} / \mathrm{kg}$, velocity $100 \mathrm{~m} / \mathrm{s}$, and elevation of 0 m . Heat is lost to the surroundings at the rate of $0.29 \mathrm{~kJ} / \mathrm{s}$. If the rate of flow through the turbine is $0.42 \mathrm{~kg} / \mathrm{s}$, what is the power output of the turbine in kW .
b) In a piston-cylinder device, 300 g of saturated water vapour, maintained at 200 kPa , is heated by a resistance heater installed within the cylinder for 10 min by passing a current of 0.35 ampere from a 220 V source. The heat loss from the system during the heating process is 2.2 kJ . Calculate the work done and the final temperature of the steam.

UNIT-II

3. a) Derive the expression for maximum work obtainable by using one finite body at temperature T and a thermal reservoir at temperature $\mathrm{T}_{0}, \mathrm{~T}>\mathrm{T}_{0}$.
b) A Carnot heat engine receives heat from a reservoir at $900^{\circ} \mathrm{C}$ at a rate of $800 \mathrm{~kJ} / \mathrm{min}$ and rejects the waste heat to the ambient air at $30^{\circ} \mathrm{C}$. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at $-5^{\circ} \mathrm{C}$ and transfers it to the same ambient air at $30^{\circ} \mathrm{C}$. Determine (i) the maximum rate of heat removal from the refrigerated space and (ii) the total rate of heat rejection to the ambient air

OR

4. a) Calculate the entropy change of the universe as a result of the following processes:
i. A copper block of 750 g mass and with Cp of $150 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $9^{\circ} \mathrm{C}$.
ii. The same block at $9^{\circ} \mathrm{C}$ is dropped from a height of 100 m into the lake.
iii. Two such blocks at 100 and $0^{\circ} \mathrm{C}$ are joined together
b) Air is compressed from 1 bar at $15^{\circ} \mathrm{C}$ to 6 bar at $110^{\circ} \mathrm{C}$, in a steady-flow device, (a) Determine the entropy change for the air. (b) If there is heat transfer between the air and environment at $15^{\circ} \mathrm{C}$, and the actual shaft work input is $200 \mathrm{~kJ} / \mathrm{kg}$, determine the entropy change for the overall process

UNIT-III

5. a) A piston-cylinder device initially contains 50 L of liquid water at $40^{\circ} \mathrm{C}$ and 200 kPa . Heat is transferred to the water at constant pressure until the entire liquid is vaporized.
i. What is the mass of the water?
ii. What is the final temperature?
iii. Determine the total enthalpy change.
iv. Show the process on a $T-v$ diagram with respect to saturation lines.
b) Determine the specific volume, internal energy, and enthalpy of compressed liquid water at $100^{\circ} \mathrm{C}$ and 15 MPa using the saturated liquid approximation. Compare these values to the ones obtained from the compressed liquid tables.

OR

6. a) Water is boiled in a pan covered with a poorly fitting lid at a specified location. Heat is supplied to the pan by a $2-\mathrm{kW}$ resistance heater. The amount of water in the pan is observed to decrease by 1.19 kg in 30 minutes. If it is estimated that 75 percent of electricity consumed by the heater is transferred to the water as heat, determine the local atmospheric pressure in that location.
b) A $0.3-\mathrm{m} 3$ rigid vessel initially contains saturated liquid- vapor mixture of water at $150^{\circ} \mathrm{C}$. The water is now heated until it reaches the critical state. Determine the mass of the liquid water and the volume occupied by the liquid at the initial state.

UNIT-IV

7. a) A gas mixture of 2.2 kg mass, which consists of 75% nitrogen, 22% oxygen and 3% carbon dioxide by mass, is contained in a piston-cylinder device. The mixture is initially at 101 kPa and 310 K . It is then compressed to 500 kPa in a reversible polytrophic process with an index of 1.3. Determine the work done, heat transfer, and change in entropy associated with the compression process. Take y for $\mathrm{N}_{2}, \mathrm{O}_{2}$ and CO_{2} as $1.4,1.4$ and 1.3 respectively
b) A rigid vessel of volume $0.4 \mathrm{~m}^{3}$ contains 10 kg of air at 303 K . Using (i) the perfect gas equation, (ii) the Vander Walls' equation of state and (iii) generalized compressibility chart, determine the pressure which would be exerted by the air on the vessel

OR

8. a) An insulated rigid tank is divided into two compartments by a partition. One compartment contains 7 kg of oxygen gas at $40^{\circ} \mathrm{C}$ and 100 kPa , and the other compartment contains 4 kg of nitrogen gas at $20^{\circ} \mathrm{C}$ and 150 kPa . Now the partition is removed, and the two gases are allowed to mix. Determine (a) the mixture temperature and (b) the mixture pressure after equilibrium has been established
b) $0.03 \mathrm{~m}^{3}$ of nitrogen contained in a cylinder behind a piston is initially at 1.05 bar and $15^{\circ} \mathrm{C}$. The gas is compressed isothermally and reversibly until the pressure is 4.2 bar. Calculate the change of entropy, the heat flow, and the work done, and sketch the process on a $p-v$ and T-s diagrams. Assume nitrogen to act as a perfect gas. Molecular weight of nitrogen $=28$.

UNIT-V

9. a) An ideal Otto cycle has a compression ratio of 8 . At the beginning of the compression process, air is at 100 kPa and $17^{\circ} \mathrm{C}$, and $800 \mathrm{~kJ} / \mathrm{kg}$ of heat is transferred to air during the constantvolume heat-addition process. Accounting for the variation of specific heats of air with temperature, determine (i) the maximum temperature and pressure that occur during the cycle, (ii) the net work output, (iii) the thermal efficiency, and (iv) the mean effective pressure for the cycle.
b) The efficiency of an Otto cycle is 60% and $\gamma=1.5$. What is the compression ratio ?

OR

10. a) A Diesel engine working on a dual combustion cycle has a stroke volume of 0.0085 m 3 and a compression ratio $15: 1$. The fuel has a calorific value of $43890 \mathrm{~kJ} / \mathrm{kg}$. At the end of suction, the air is at 1 bar and $100^{\circ} \mathrm{C}$. The maximum pressure in the cycle is 65 bar and air fuel ratio is 21 : 1. Find for ideal cycle the thermal efficiency. Assume $c p=1.0$ and $c v=0.71$
b) The mean effective pressure of a Diesel cycle is 7.5 bar and compression ratio is 12.5 . Find the percentage cut-off of the cycle if its initial pressure is 1 bar.

Hall Ticket Number :										

R-15

Code: 5G535
II B.Tech. I Semester Regular Examinations November 2016
Machine Drawing
(Mechanical Engineering)
Max. Marks: 70

PART-A
Time: 4 Hours
$2 \times 10=20 M$

Answer the following two questions each carries 10 marks

1. Draw three view of a hexagonal bolt of nominal diameter 30 mm and length 110 mm .

> OR
2. Draw
a) Half sectional front view, top half in section and
b) Side view of a rigid Flange Coupling to connect two shafts, each of diameter 25 mm .
3. Draw sectional front view and top view of the double riveted butt joint with double strap with diameter of rivet as 20 mm .

OR

4. Draw the half sectional view from the front, with top half in section and the view from the side of a cotter joint with socket and spigot ends, to connect two rods of 50 mm diameter each.
5. Assemble all the parts of the Drill jig, shown in below figure and draw the following views:
a) Half sectional view from the front
b) View from above.

Parts list

Part No.	Name	Mati	Oty
1	Base plate	Cl	1
2	Stern	MS	1
3	Jig plate	Cl	1
4	Screw	MS	3
5	Stud	MS	1
6	Nut M20	MS	1
7	Bush case hardened	Steel	5
8	Latch washer	MS	1
9	Screw	MS	1

OR
6. Assemble all the parts of the screw jack, shown in below figure and draw the following views:
a) Half sectional view from the front
b) View from above.

Parts lat

Fart No.	Name	Matl	Oty
1	Bocty	Cl	1
2	Nut	GM	1
3	Screw	MS	1
4	Cup	CS	1
5	Washer	MS	1
6	Screw	MS	1
7	Tommy bar	MS	1

Part-C
Answer any one of the following carries $\mathbf{2 5}$ marks
7. Prepare the part drawings of the plumber block

8. Prepare the part drawings of the Tool Post

Parts list

Part No.	Name	Matl.	Qty.
1	Body	MS	1
2	Clamp screw	MCS	1
3	Wedge	CI	1
4	Ring	MS	1
5	Square block	MS	1

