Hall Ticket Number :							
						_	R-15

Code: 5GC33

II B.Tech. I Semester Regular Examinations November 2016

Probability & Statistics

(Computer Science and Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70Marks)

- 1. The chances of th a) tuc UNIT-I Olympiad are $\frac{1}{2}$, $\frac{1}{3}$ ree sil tents A, B and C solving a problem given in mathematics and $\frac{1}{4}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability of the problem being solved.
 - b) A consulting firm rents cars from three agencies, 20% from agency D, 20% from agency E and 60% from agency F. If 10% of the cars from D, 12% of the cars from E and 4% of the cars from F have bad tires, what is the probability that the firm will get a car with bad tires?

OR

2. A discrete random variable has probability distribution a)

х	1	2	3	4	5
p(x)	0.12	0.15	0.23	0.	0.2

Calculate

- (a) Expected value
- (b) Standard Deviation.
- b) Let x be a con^{rd Dev}; ran^{n.} variable assuming any value x in i) Verify if $f(x) = \cos_x in \begin{bmatrix} 0, & \pi^{1} \\ & \pi^{1} \end{bmatrix}$ is suitable for a pdf.

ii) Find the probability that $x \in \left[0, \frac{\pi}{4}\right], x > \frac{\pi}{4}$ and $x < \frac{\pi}{3}$

- 3. a) Find the mean and variance of a Normal distribution.
 - b) In a factory 2% of items are defective, by using Poisson distribution, find the probability of having more than 2 defective items in a sample of 100 item.

OR

4. Fit a Poisson distribution to the following data

<u> </u>		UNIT-III		<u>.</u>	<u>.</u>	
5 itio	122	60	15	2	1	
$\frac{x}{x}$	0	1	2	3	4	

- 5. Find the mean and Standard Deviation of sampling distribution of variances for the population 2,3,4,5 by drawing samples of size two.
 - a) With replacement
 - b) Without replacement.

OR

- 6. 0 is taken from a population with = 5.1. Given a) A random sample of size that the sample mean is $\frac{n=1}{\bar{x}}$ 21.6 construct a 95% confidence $\frac{\sigma}{n}$ area to the population mean μ .
 - $\frac{1}{5} = \frac{1.6}{5} \frac{1.$ n=80, b) Consider confidence interval $\int_{0}^{\infty} t H e^{\mu t}$

UNIT–IV

- 7. a) A manufacturer of a patent medicine claimed that it was 90% effective in relieving an allergy for a period of 8 h. In a sample of 200 people who had the allergy, the medicine provided relief for 160 people. Determine whether manufacturer's claim is legitimate by using 0.01 as the level of significance.
 - b) It has been $cl_{aime}d$ that the resistance of electric wire can be reduced by more than 0.050 ohm by alloying. To test this claim, 32 values obtained for standard wire yielded $\bar{x} = 0.136 \ 6hm \ and \ S_1 = 0.004 \ ohm \ and \ 32$ values obtained for alloyed wire yielded $x_2 = 0.083 \ ohm \ and \ S_2 = 0.005 \ ohm$. At the 0.05 ohm level of significance, does this support the claim.

OR

8. A new process of producing synthetic diamonds can be operated at a profitable level only if the average weight of the diamonds is greater than 0.5 carat. To test the profitability of the process, 6 diamonds are produced with weights 0.45, 0.60, 0.52, 0.49, 0.58 and 0.54 carat respectively. Do the 6 measurements present sufficient evidence to indicate that the average weight of the diamonds produced by the process is in excess of 0.5 carat?

UNIT-V

9.

persons were examined by yielding the following data.										
		I	Experience	;						
		High	Medium	Low						
	Excellent	23	60	29						
perfection	Good	28	79	60						
	Satisfactory	9	49	63						
	OR									

In order to determine whether perfection in job depends on the experience, 400

10. The following data gives the results of an investigation on the sex distribution of the children of 32 families containing four children each. Use the binomial distribution with n=4 and $p = \frac{1}{2}$ to calculate expected frequencies. Then apply the χ^2 test to determine whether this binomial model is satisfactory here. Comment.

Number of Sons	0	1	2	3	4
Number of families	4	10	8	7	3

***	K
-----	---

	На	all Ti	cket Number :														
	Сс	ode:	5G236					<u> </u>							R	-15	
			ll B.Tech.	I Semes	ster R	Regi	ular	Exc	amir	natio	ons	Nov	veml	ber	2016		
			Electric	al Engir		-						ngi	neei	ring			
			. Marks: 70 r all five units k	by choos	•		•		fror			unit	(5 x	14 =	-	: 3 Hour arks)	S
								JNIT]							
1.	a) b)	In t	w the Network e he network show oss all resistors	wn in figu			ssifie	d. Ex	kplaii			•	age o	drops	5		7M
				12V ($\stackrel{2\Omega}{\longrightarrow}$ I	\downarrow	- MM5	4Ω \rightarrow 1 Ω 100p	w- 1 ₂	MM	5Ω					
							Figu		5								7M
2.	a)	Dof	ine ohms law a	nd ite limit	tation	-	(OR									4M
۷.	b) c)	A c res	surrent of 10 A istor is 100 W. F ur resistors of 2	flows thro Find the p	ough a .d. aci	a res ross	the r	esist	or an	nd th	e en	ergy	supp	lied t	to the	circuit	5M
	C)	Wh	at potential diffe y be absorbed?				lied t		e gro	•	•				•		5M
3.	a)	Exc	plain the principl	e of opera	ation d	of ae			-11								8M
	b)	A 2 1.2	40V,dc shunt m and 240 resp eries with the arr	otor takes pectively c	32 A of the l	of li load	ne cu torqu peed	urren e rer									6M
4.	a)	•	blain the concep nerator	t of self- e	excitat	tion (erato	or an	d list	out	the ty	pes	of		7M
	b)	res	20V, DC shunt i istance of the ar pectively. Find t	mature w	vinding	g and	d shu d by	nt fie arma	eld w ature	indir				rpm. nd 40			7M
	5.	a)	What is regulation	on? Derive	an ex	nres		INIT-		roxir	nate	volta	ne rec	ulatio	n		7M
	5.	b)	3-phase, 6 pol load. Determin frequency of m	le, 50 Hz ne (i) Syn	induc chron	ction ous	moto spee	or ha	as a	slip	of 19	% at	no-lo	ad a	ind 3%		7M
								OF	र								
	6.	a)	Explain the pri	nciple of a	operat	tion o	of an	alter	rnato	or wit	h ne	at dia	agram	٦			7M
		b)	A single phase load and full loa			-	e the	• •	iency					ency	of 90%	6 at half	7M
	7.	a)	Explain V-I ch	aracterist	ics of	P-N) Э.							7M
		b)	Write short not	e on sing	le sta	ge C	Eam	nplifie	er								7M
	•	,	—					OF	-								
	8.	a) b)	Explain the work Explain the ope														7M 7M
	9.	5)	Derive the exp				ι	JNIT	-V]							14M
								OF	र								
	10		Explain the o frequency and	•			al. E				ch.	CRC) is (used	to m	neasure	14M

Page ${\bf 1}$ of ${\bf 1}$

Hall T	icke	et Number :	
Code	· 50	R-15	
Code		I B.Tech. I Semester Regular Examinations November 2016	
	-	Principles of Programming Languages	
		(Computer Science and Engineering)	
		rks: 70 er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	ours

		UNIT-I	
1.	a)	Describe the characteristics of a good programming language and how are they evaluated?	71
	b)	What are the disadvantages of having too many features in a programming language?	71
		OR	
2.		Explain the formal methods used for describing syntax.	14
		UNIT–II	
3.	a)	Mention the advantages and disadvantages of static and dynamic binding?	71
	b)	Explain the design issues of arrays.	71
		OR	
4.	a) b)	How does operand evaluation order interact with functional side effects?	71
	b)	How does C support relational and Boolean expressions?	71
		UNIT-III	
5.	a)	What are the design issues of multiple selection statements?	71
	b)	Explain how C# switch statement is safer than that of Java? OR	71
6.	a)	Explain the characteristics of subprograms?	71
0.	b)	Illustrate the three semantic models of parameter passing.	71
	- /	UNIT-IV	
7.		How is exception handling implemented in Ada, C++, Java?	14
7.		OR	1-11
8.	a)	Illustrate C++ parameterized Abstract Data Types with an example.	71
	b)	How is concurrency achieved using semaphores?	71
		UNIT-V	
9.	a)	Explain different approaches that math goals to facts in a database?	71
	b)	Discuss the applications of logic programming.	71
		OR	
10.	a)	Describe the syntax and semantics of COND, LET.	71
	b)	What are the differences between CONS, LIST and APPEND?	71

Hall	Ticke	et Number :	
Code	• 5G	R-15	
couc		II B.Tech. I Semester Regular Examinations November 2016 Digital Logic Design (Computer Science and Engineering)	
Ма		Marks: 70 Time: 3	
	Ans	swer all five units by choosing one question from each unit (5 x 14 = 70Mark ********	s)
		UNIT–I	
1.	a)	Convert the given Binary number 11011101 into i) BCD ii) Hexa-decimal	
		iii) Decimal	6M
		What is a 2's complement? Explain it with an example?	4M
	c)	Explain How to subtract the given two binary numbers using 2's complemen with an example.	τ 4Μ
		OR	
2.	a)	Simplified the following Boolean function. To a minimum no of literals.	
		i) $x + x'y$	
		ii) $x(x'+y)$ iii) $xy + x'z + yz$.	9M
	b)		5M
	0)	UNIT-II	0101
3.	a)		
	- 7	F(A,B,C,D) = (0,2,5,8,9,13,15) and DO-CARE condition D(A,B,C,D) = (1,7,14)	9M
	b)	Implement the above simplified function using NAND and NOR.	5M
		OR	
4.	a)	Explain don't-care condition.	4M
	b)	Implement AND, OR, and NOT gates using Universal Gates.	6M
	c)	Describe EX-OR function with an example.	4M
		UNIT–III	
5.	a)	What is a Multiplexer? Explain it.	5M
	b)	Construct 16x1 Multiplexer using 4x1 Multiplexers.	9M
6		OR What is a combinational Circuit? Evalain it	714
6.	a) b)	What is a combinational Circuit? Explain it. Implement Full adder Combinational Circuit.	7M 7M
	0)		7 101
7.	a)		4M
	b)	Differentiate Latches and Flip-Flops.	4M
	c)	Describe JK Flip-Flops.	6M
		OR	
8.	Imp	blement 4-bit synchronous counter with a neat diagram.	14M
9.		Write short notes on i) ROM	
		ii) Programmable Logic Array	14M
		OR	
10.		Explain the following	
		 i) RAM ii) Error Detection and correction 	14M

		R-15	
ode	e: 5G]
	1	I B.Tech. I Semester Regular Examinations November 2016 Advanced Data Structures Through C++	
		(Common to CSE & IT)	
-		Irks: 70 Time: 3 Hou	Jrs
	Answ	er all five units by choosing one question from each unit (5 x 14 = 70Marks)	
		UNIT-I	
۱.	a)	What is a Function? Discuss about various parameter passing methods in C++.	10N
	b)	Write short notes on Friend Function.	4N
		OR	
2.	a)	Explain in detail about Exception Handling Mechanism with an example.	9N
	b)	Discuss about Dynamic Memory Allocation and De allocation	5N
		UNIT–II	
3.	a)	Differentiate between Constructor Overloading and Function Overloading	8N
	b)	Discuss in detail about Polymorphism	6N
_		OR	
1.	a)	What is inheritance? Explain the different types of inheritance with	10M
	b)	examples. Write an algorithm for Bubble sort	4N
	D)	Write an algorithm for Bubble sort.	410
5.	a)	What is a Stack ADT? Write the ADT implementation of Stacks in C++.	7N
	⊆, b)	What is a Queue ADT? Explain the various Operations of Queue with an example.	7N
	,	OR	
5.	a)	Explain the various operations of Dictionaries with an example.	10M
	b)	Compare and contrast between Chaining and Open Addressing.	4N
		UNIT-IV	
7.	a)	What is a Binary Tree? Explain in detail about Binary Trees Traversals with	
		an example.	6N
	b)	Construct Max heap and Min Heap for the following data.	
		20,15,95,60,35,43,12,75,34,59	8M
_		OR	
3.	a)	Explain in detail about Binary Search Trees and its operations.	7N
	b)	What is an AVL tree? Discuss the various rotations of AVL Trees.	7N
h		UNIT-V Discuss about Splay Trace with an example	ON
9.	a) b)	Discuss about Splay Trees with an example What is a B-Tree? Explain the various operations of B-Trees.	8N 6N
	b)	OR	VIO
).		Explain in detail about ant two Fixed pattern Matching Algorithms	14M
			1 - 1 I V

	ł	Hall Ticket Number :											
	Сс	ode: 5G431			<u> </u>				L			R-15	•
		II B.Tech. I Se	mester	Regu	lar E	xam	inat	tions	s No	ven	nber	2016	
				screte Comm		-	-						
	N	1ax. Marks: 70 Answer all five units	by choos	ing one	e que	stion	from	eac	:h uni	it (5	x 14 =	Time: 3 Ho 70 Marks)	ours
						UNIT							
1.	a)	Prove that p (q r) a			-	cally	equiv	/alen	t				
	b)	Prove that the followin			nent:								
		$(p \Rightarrow q) \lor r \equiv (p \lor r)$)⇒(q∨	r)									
						OR							
2.	a)	If P, Q and R are three (P (Q R)) V (~P (Q		ariables	s, obta	ain th	e pri	ncipa	l disj	uncti	ve no	rmal form fo	or
	b)	Examine the validity of Prices are high or the inflation. There is an ir	re are pr	ice con	trols.	If the	ese a	are pi		•		•	•
						UNIT	-11						
3.	a)	Define group, monoids	, semi gr	oups ar	nd sub	ogrou	ps.						
	b)	Define cyclic group, per	mutation	group a	nd dih	nedral	grou	ıp.					
		c group, pe	mutation	aroup a	nd dir	OR	arc						
4.	a)	Prove that $A = B, C$											
	b)	If function f is one-one	onto ther	n invers				also i	one –	one	onto		
-	-)												
5.	a)	Prove that theorem 'If		•				•				.1	
	b)	Prove that in a room o	r 13 peop	ie, 2 or	more	peop	ble ha	ave th	heir b	irthd	ays in	the same r	nonth.

OR

UNIT-IV

- 6. a) Show that 1+2+3+...+n = for all integer, n 1 by the principle of mathematical induction.
 - b) Prove that $5^{n}+3$ is divisible by 4 for all integers n 0.
- Solve the recurrence relation $a^{n-4} + 3 a^{n-2} = 0$ for $n \ge 2$ with initial conditions $a_0 = 2$ and 7. $a_1 = 4$ by using generating functions.
- OR 10 **or** :7 Solve the recurrence relation " "CT 7" "+4" 8. a^{n-1} an-2UNIT-III
- 9. a) Define union, intersection and product of two graphs.
 - b) A simple graph with n vertices and k components cannot have (n-k)(n-k +1) more than edges.

OR

a) Find the minimal spanning tree of the following weighted graph 10.

b) If a connected graph G is Eulerian then every vertex of G has even degree.