7M

7M

7M

## II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 Fluid Mechanics and Hydraulic Machines

(Electrical & Electronics Engineering)

#### Max. Marks: 70

Time: 03 Hours

### Answer *any five* questions All Questions carry equal marks (14 Marks each)

- 1 a) Discuss any four important fluid properties in detail.
  - b) The velocity distribution in a viscous flow over a plate is given by  $u = 4y y^2$  for y 2m Where u = velocity in m/sec at a point distant y from the plate. If the coefficient of dynamic viscosity is 1.5 Pa.s determine the shear stress at y = 0 and at y= 2.0m

#### 2. a) Define and explain streamline, path line and streak line in fluid mechanics. 7M

- b) Find the equation of stream line passing through (2,2) for the fluid flow V = -2yi-6xj 7M
- 3. a) Describe the Reynold's experiment with the help of a neat sketch.
  - b) A 6 cm diameter pipe has a discharge of 450 l/min. At a section, the pipe has a sudden expansion to a size of 9 cm diameter. If the pressure just upstream of the expansion is 20 KN/ m<sup>2</sup>, calculate the pressure just after the expansion. Assume the pipe to be horizontal.

|    |    |                                                                                      | 7 1 1 1 |
|----|----|--------------------------------------------------------------------------------------|---------|
| 4. | a) | A jet of oil of specific gravity 0.7 strikes a fixed curved symmetrical plate at its |         |
|    |    | center and leaves at the outlet tips. The diameter of the jet is 62 mm and the       |         |
|    |    | velocity of the jet is 45 m/sec. If the jet is deflected by 100 degrees, calculate   |         |
|    |    | the force exerted on the curved plate.                                               | 7M      |
|    | b) | How do you estimate the impact of a jet striking a moving normal plate in the        |         |

- direction of the jet? 7M
- 5. a) What are the types of hydroelectric power plants? Explain in detail. 7M
  - b) Explain how you will estimate the power developed by a power plant given its catchment area.
     7M

#### 6. a) Explain the working of a Pelton wheel with neat sketches? 7M

- b) A Francis turbine works under a head of 8.5 m at a speed of 300 rpm. A power of 100 KW is developed with a discharge of 3 m<sup>3</sup>/sec. The runner diameter is 2.2 m. Find the speed, discharge and power if the head is increased to 18m.
- 7. a) What are the types of similarities between a prototype and a model? 7M
  - b) A hydraulic turbine develops 8000 KW under a head of 30 m at 250 rpm. What is the specific speed of the turbine? What would be the speed and power under a head of 18m.
- 8. a) What is indicator diagram of a reciprocating pump? Explain the working of a reciprocating pump with a neat sketches.7M
  - b) Determine the number of the impellers required for a multistage centrifugal pump to deliver 3000 litres per minute to a height of 200m at a speed of 800 rpm. The specific speed value is not to exceed 600.

7M



Fig.3.

14M

4. a) Find  $R_L$  which results in resonance for the circuit of Fig. 4.a. Draw the locus to explain the results.





b) Three impedances  $Z_1 = (5 + j5)$ ,  $Z_2 = -j8$  and  $Z_3 = 4$  are connected in series to an unknown voltage source V. Find the current and supply voltage V if the voltage drop across  $Z_3$  is  $63.2/18.45^\circ$  volts. 5M

9M

7M

7M

6M

8M

- 5. a) A balanced Y-connected load of (100 + j 50) is connected to a balanced three-phase source. If the line current is 42 A and the source supplies 12 kW, determine the line voltage and the phase voltage.
  - b) Explain how the three-phase power is measured by two-wattmeter method with relevant diagrams in a star connected system.
- 6. a) Explain about dot convention in coupled coils.
  - b) Two identical coils with L = 0.02 H have a coupling coefficient K = 0.8. Find M and the two equivalent inductances with the coils connected in series aiding and series opposing.
- 7. a) Obtain the Thevenin's equivalent for the bridge circuit shown in Fig.7.a.





- b) State and explain Maximum Power transfer theorem for ac circuits. 6M
- 8. a) State and explain Millman,s theorem.
  - b) Verify reciprocity theorem for the circuit shown in Fig.8.b.



Fig.8.b. \*\*\* 8M

6M

| Hall Ticket Number : |  |
|----------------------|--|
|----------------------|--|

#### Code : 1G234

# R-11 / R-13

|            |          | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                               | -    |
|------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|            |          | II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015<br><i>Electromagnetic Fields</i><br>( Electrical & Electronics Engineering )                                                                                                                                                                                            |      |
| Ν          | lax      | Marks: 70 Time: 03 Hours                                                                                                                                                                                                                                                                                                              | 5    |
|            | nux.     | Answer <i>any five</i> questions<br>All Questions carry equal marks (14 Marks each)                                                                                                                                                                                                                                                   |      |
| 1.         | a)       | State and explain gauss's law in differential form and explain what do you mean by .D?                                                                                                                                                                                                                                                | 10M  |
|            | b)       | An infinitely long uniform line charge is located at y=3, z=5. If $_{\perp}$ = 30 nC/m, find field intensity E at P(0,6,1) ?                                                                                                                                                                                                          | 4M   |
| 2.         | a)       | Calculate the potential at a point due to an infinitely long line charge of uniform density <sub>0</sub> C/m situated on the z-axis by taking an appropriate reference of zero potential?                                                                                                                                             | 1014 |
|            |          | •                                                                                                                                                                                                                                                                                                                                     | 10M  |
|            | b)       | Define dipole and dipole element?                                                                                                                                                                                                                                                                                                     | 4M   |
| 3.         | a)       | Explain the phenomenon of polarization when a dielectric slab is subjected to<br>an electric field, with the help of neat sketches. How this phenomenon reduces<br>the electric field inside the dielectric?                                                                                                                          | 8M   |
|            | b)       | A capacitor of parallel plates of 50 cm side is charged to a potential difference<br>of 250 volt, when the plates are 1 mm apart. Find the work done in separating<br>the plates from 1 mm to 3 mm. Assume perfect insulation?                                                                                                        | 6M   |
| 4.         | a)       | Find the magnetic field intensity at a point $(r, , z)$ due to an infinitely long straight filament carrying a current I in the +z direction?                                                                                                                                                                                         | 8M   |
|            | b)       | A wire carrying a current of 100 A is bent into the form of a circle of diameter 10 cm. Calculate (a) flux density at the centre of the coil (b) flux density at a point on the axis of the coil and 12 cm from it?                                                                                                                   | 6M   |
| 5.         | a)       | Derive the expression curl $H = J$ ?                                                                                                                                                                                                                                                                                                  | 7M   |
|            | b)       | Show that the magneto static field can be describes in terms of vector potential which satisfies the vector Poisson's equation?                                                                                                                                                                                                       | 7M   |
| 6.         | a)<br>b) | Obtain the expression for force between two current carrying conductors?<br>What is the maximum torque on a square loop of 1000 turns in a field of<br>intensity of 1 tesla? The loop has 10 cm sides and carries 3 A. What is the                                                                                                    | 8M   |
|            |          | magnetic moment of the loop?                                                                                                                                                                                                                                                                                                          | 6M   |
| 7.         | a)       | Derive general expression for the boundary relations for static magnetic field for (i) tangential components (ii) normal components. Assume the common boundary has been separated by two different media having constants $\mu_{1, -1}$ and $\mu_{2, -2}$ . The common boundary has a surface current density of K <sub>s</sub> A/m? | 9M   |
|            | b)       | A solenoid consisting of 1000 turns of wire wound on a former of length 100 cm and diameter 3 cm is placed co axially within another solenoid of the same length and the number of turns but diameter 6 cm. find the mutual inductance and the coupling co efficient of the arrangements?                                             | 5M   |
| 0          | 2        |                                                                                                                                                                                                                                                                                                                                       |      |
| <i>ŏ</i> . | a)<br>b) | Explain the significance of displacement current?<br>A single turn rectangular loop of enclosed area 2 sq.m is situated in air with its plane normal to a magnetic field, which varies at the rate of 2Wb/m <sup>2</sup> sec.                                                                                                         | 7M   |
|            |          | Estimate e.m.f induced in the loop.                                                                                                                                                                                                                                                                                                   | 7M   |

| Hal                                                                       | l Tic        | ket Number :                      |                                        |       |        |                |                 |        |        |                       |        |        | ]                 |        |         |          |
|---------------------------------------------------------------------------|--------------|-----------------------------------|----------------------------------------|-------|--------|----------------|-----------------|--------|--------|-----------------------|--------|--------|-------------------|--------|---------|----------|
| Cod                                                                       | Code : 1G232 |                                   |                                        |       |        |                |                 |        |        | 1 / R-13              |        |        |                   |        |         |          |
| II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015             |              |                                   |                                        |       |        |                |                 |        |        |                       |        |        |                   |        |         |          |
|                                                                           |              |                                   |                                        | ( El  |        |                | ical .<br>Elect |        |        | es <b>-I</b><br>ginee | rina   | )      |                   |        |         |          |
| Ν                                                                         | lax.         | Marks: 70                         |                                        | (     |        |                |                 |        |        | JIIICC                | , ing  | /      | Т                 | ime:   | 03 H    | ours     |
|                                                                           |              | Δ                                 |                                        |       |        |                | -               |        | •      | tions                 |        |        | <b>.</b>          |        |         |          |
|                                                                           |              | А                                 | ll Qu                                  | esiic | ons c  | arry           |                 | 311112 | Irks   | (14 N                 | /lark  | sead   | cn)               |        |         |          |
| 1.                                                                        | a)           | Derive the exp                    | oress                                  | ion f | or ele | ectric         | cal er          | nergy  | inpu   | ut in a               | a sing | gly ex | xcited            | syst   | em.     | 7M       |
|                                                                           | b)           | Derive the exp<br>assuming that   |                                        |       |        |                |                 |        |        |                       | a si   | ngly   | excite            | ed sys | stem I  | by<br>7M |
| 2.                                                                        |              | A progressive                     |                                        |       |        |                |                 |        |        |                       | d for  | a 4    | pole <sup>2</sup> | 14 slo | ot 2 c  |          |
|                                                                           |              | sides/slot dc a                   | armat                                  | ture. | Obta   | ain ( <b>i</b> | ) win           | ding   | table  | e (ii                 | i) wir | nding  | ı diagı           | ram i  | in radi | ial      |
|                                                                           |              | form (iii) posit                  | position of brushes on the commutator. |       |        |                |                 |        |        |                       |        |        |                   |        | 14M     |          |
| 3.                                                                        | a)           | Explain the ter                   |                                        | .,    |        |                |                 |        |        |                       |        | •      |                   |        |         | 7M       |
|                                                                           | b)           | A 4 pole DC s<br>armature resi    |                                        | •     |        |                |                 |        |        |                       |        |        |                   |        |         |          |
|                                                                           |              | armature. The                     |                                        |       |        |                |                 |        |        |                       | -      |        |                   |        | -       |          |
|                                                                           |              | connected acr                     | ross                                   | the a | armat  | ture           | term            | inals  | and    | the g                 |        |        |                   |        |         | 00       |
|                                                                           |              | rpm. Calculate                    |                                        | •     |        |                |                 |        |        | l.                    |        |        |                   |        |         | 7M       |
| 4.                                                                        | a)           | Derive the exp                    |                                        |       |        |                |                 |        |        |                       |        |        |                   |        |         | 7M       |
|                                                                           | b)           | Calculate the rpm=300, diam       |                                        |       |        | •              |                 | •      |        | •                     |        | •      |                   |        | •       |          |
|                                                                           |              | brush width =                     | = 2.2                                  | 5 cm  | n, ler | ngth           | of e            | ach    | cond   | luctor                | · = ′  | 1m, (  | effecti           | •      |         | of       |
| F                                                                         |              | core=0.3m, tur                    | •                                      |       |        |                |                 |        |        |                       |        |        |                   |        | thour   | 7M       |
| 5.                                                                        | a)           | Explain the pa<br>of equalizer ba |                                        | i ope | ralio  |                | two             | serie: | s ger  | lerat                 | orar   | iu ai: | so ext            | Jiain  | the u   | se<br>7M |
|                                                                           | b)           | Two DC shun                       | •                                      |       |        | •              | •               | •      |        |                       |        |        |                   |        |         |          |
|                                                                           |              | Each generate<br>100 ohm. The     |                                        |       |        |                |                 |        |        |                       |        |        |                   |        |         |          |
|                                                                           |              | bus bar voltag                    |                                        |       | •      |                |                 |        |        |                       |        | J 2-10 | , v. c            | Jaicu  |         | 7M       |
| 6.                                                                        | a)           | What are the a                    | applio                                 | catio | ns of  | vari           | ous [           | DC m   | otors  | s?                    |        |        |                   |        |         | 7M       |
|                                                                           | b)           | A 250 V, DC                       |                                        |       |        |                |                 |        |        |                       |        |        |                   |        |         |          |
|                                                                           |              | resistance of motor draws 2       |                                        |       |        |                |                 | •      |        |                       | •      |        |                   |        | •       |          |
|                                                                           |              | resistance of 2                   |                                        |       |        |                |                 |        | •      |                       |        | mot    | 0                 |        |         | 7M       |
| 7.                                                                        | a)           | Explain the W                     | ard-L                                  | eon   | ard n  | neth           | od of           | spee   | ed co  | ontrol                | l of a | DC     | moto              | r clea | arly wi | ith      |
|                                                                           | <b>L</b> )   | a neat diagran                    |                                        | ata a |        | n d            | diaad           | vont   |        | of                    |        |        | ontrol            | h.     | vonin   | 8        |
|                                                                           | b)           | Explain the a armature resis      |                                        | -     | 25 a   | na c           | JISau           | vanta  | ages   | 0I                    | spee   | eu co  | Shiroi            | by     | varyn   | ng<br>6  |
| 8.                                                                        | a)           | Explain the ret                   |                                        |       | est fo | r finc         | ding c          | out th | e rota | ationa                | al los | ses c  | of a DO           | C ma   | chine.  |          |
|                                                                           | b)           | A retardation                     |                                        |       |        |                | •               |        | •      |                       |        |        |                   |        |         |          |
|                                                                           |              | The induced                       |                                        | -     |        |                |                 |        |        |                       |        |        |                   | •      | -       |          |
|                                                                           |              | armature circu<br>from supply to  |                                        |       |        |                |                 | •      |        | •                     | •      |        |                   |        |         |          |
|                                                                           |              | machine wher                      | n run                                  | ning  | as a   | mot            | tor ar          | nd tal | king   | 25 A                  | ona    | a sup  | ply of            | f 250  | V. Tł   |          |
| resistance of its armature is 0.4 ohm and that of its field winding is 25 |              |                                   |                                        |       |        |                |                 |        | 250    | ohm.                  | 7M     |        |                   |        |         |          |

| Hall Ti | cket Number :                                             |                  |        |                                             |                     |                     |                     |              |                     |                                            |                                                        |         |                     |         |
|---------|-----------------------------------------------------------|------------------|--------|---------------------------------------------|---------------------|---------------------|---------------------|--------------|---------------------|--------------------------------------------|--------------------------------------------------------|---------|---------------------|---------|
| ode : 1 | GC32                                                      |                  |        |                                             | ]                   |                     | ]                   |              |                     | <u> </u>                                   |                                                        |         | R-11 /              | ′ R-13  |
| Mov     | II B.Tech. I S                                            |                  | Eng    | ipple<br>inee<br>comm                       | ring                | Mai                 | them                | atic         |                     | ns No                                      |                                                        |         | 015<br><b>03 Ho</b> |         |
| IVIAX   |                                                           | l Questio        |        | swer<br>carry                               | equa                |                     |                     |              |                     | s eacl                                     |                                                        | me.     | 03 110              | ui S    |
| 1. a)   | Find the Rank o                                           | f the mat        | rix A  | $=\begin{bmatrix} 2\\4\\1\\1 \end{bmatrix}$ | -2<br>2<br>-1<br>-2 | 0<br>0<br>0<br>1    | 6<br>2<br>3<br>2] b | y Re         | educir              | ng it to                                   | o Cano                                                 | onica   | al form.            | 7M      |
| b)      | Compute the E                                             | igen valu        | ies o  | f the                                       | matri               | $\mathbf{x} A^{-1}$ | , if _              | <b>A</b> =   | 2 2<br>1 3<br>1 2   | $ \begin{array}{c} 1\\ 1\\ 2 \end{array} $ |                                                        |         |                     | 7M      |
| 2. a)   | Compute the ro                                            | oot of the       | Equ    | ation                                       | $x.\log$            | $g_{10}^{(x)}$      | =1.2                | usi          | ng Fa               | alse p                                     | ositio                                                 | n me    | ethod.              | 7M      |
| b)      | Using Newton $x \sin x + \cos x =$                        | •                |        |                                             |                     |                     | Nur                 | nerio        | cal r               | oot c                                      | of the                                                 | e Ec    | quation             | י<br>7M |
| 3. a)   | Obtain a relative $y(4) = 33.1$ , $y(5)$                  |                  |        |                                             | -                   |                     |                     |              |                     |                                            |                                                        | -       | =15.4,              | ,<br>7M |
| b)      | Calculate the maintenance co                              |                  |        |                                             | rrelat              | ion I               | oetwe               | en           | age                 | of ca                                      | ars a                                                  | nd a    | annual              | 7       |
|         | Age of cars<br>Annual Mai<br>cost (Ru                     | ntenance         |        | 2<br>160                                    | 0 1                 | 4<br>500            | 6<br>180            | 0 ^          | 7<br>1900           | 8<br>170                                   |                                                        | 0<br>00 | 12<br>2000          | 7M      |
| 4. a)   | Solve $2z + p^2 +$                                        | $qy + 2y^2$      | =0     | by us                                       | ing C               | Charp               | oit's N             | /leth        | od.                 |                                            |                                                        |         |                     | 7M      |
| b)      | Form the Partia $x^2 + y^2 + (z-c)^2$                     |                  | ential | equa                                        | ation               | by e                | elimir              | natin        | g the               | e arbit                                    | rary (                                                 | cons    | stants :            | :<br>7M |
| 5. a)   | Find the Half-R<br>that $\frac{1}{1^3} - \frac{1}{3^3} +$ |                  |        |                                             | <b>-</b> 2          | f(x) =              | = x(f               | - <i>x</i> ) | , in (              | 0 < x < 0                                  | <fa< td=""><td>nd E</td><td>Deduce</td><td></td></fa<> | nd E    | Deduce              |         |
| b)      | 1 5                                                       | 5 7              |        |                                             | 52                  | 2 •                 | . ()                | 1.1.         |                     | Γι                                         | · 1                                                    |         |                     | 7M      |
| 6 a)    | Obtain the Four                                           |                  |        |                                             |                     | ( )                 |                     |              |                     |                                            |                                                        | Sho     | ow that             | 7M<br>t |
|         | $\int_{0}^{\Gamma} \frac{\sin x - \cos x}{x^3} dx$        | $=\frac{f}{4}$ . |        |                                             |                     |                     |                     |              |                     |                                            |                                                        |         |                     | 14M     |
| 7. a)   | A Random varia                                            | able X h         | as th  |                                             | 1                   |                     | babi                | lity f       | unctio              | on:                                        |                                                        |         | 1                   |         |
|         | X         0           p(X)         0                      | 1<br>k           |        | 2<br>2 <i>k</i>                             | 3<br>27             |                     | 4<br>3 <i>k</i>     |              | 5<br>k <sup>2</sup> |                                            | 6<br>$k^2$                                             |         | 7<br>+ k            |         |
|         | (i) Determin                                              |                  |        |                                             |                     |                     |                     |              |                     |                                            |                                                        |         |                     |         |
|         | (ii) Evaluate                                             |                  |        |                                             |                     |                     |                     |              |                     |                                            | ≤4).                                                   |         |                     |         |
|         | (iii) If $p(X \leq (i + 1))$                              | 4                |        |                                             |                     |                     |                     |              |                     |                                            | , .                                                    |         |                     |         |
|         | (iv) Determi                                              | ne the di        | strib  | ution                                       | funct               | tion o              | of $X$ .            | (v) l        | Mean                | (vi) \                                     | arian/                                                 | ice     |                     | 14M     |
| 8 a)    | Define Binomia                                            | l Distribu       | ition  | and c                                       | deduo               | ce M                | ean a               | and '        | Varia               | nce                                        |                                                        |         |                     | 7M      |

 b) In a Normal Distribution 31% of the items are under 45 and 8% are over 64. Find the Mean and Variance of the Distribution. 7M

| Hall Ticket Number : |  |  |  |  |  |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|--|--|--|--|--|
|----------------------|--|--|--|--|--|--|--|--|--|--|--|

#### Code : 1G231

Max. Marks: 70

R-11 / R-13

| II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 |
|---------------------------------------------------------------|
| Switching Theory and Logic Design                             |
| (Electrical & Electronics Engineering)                        |

(Electrical & Electronics Engineering)

Time: 03 Hours

| Answer any five questions                       |  |  |  |  |  |  |
|-------------------------------------------------|--|--|--|--|--|--|
| All Questions carry equal marks (14 Marks each) |  |  |  |  |  |  |
| *****                                           |  |  |  |  |  |  |

1. a) Convert the following numbers

|    |    | <ul> <li>(i) (1776)<sub>10</sub> to base 6</li> <li>(ii) (3.1415)<sub>10</sub> to base 2</li> </ul>                                                                      | 4M  |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | b) | Write a short note on gray code                                                                                                                                          | 4M  |
|    | c) | A 7-bit hamming code is received as 0011011. what is the correct code (even parity)                                                                                      | 6M  |
| 2. | a) | Reduce the following boolean expressions to the indicated no. of literals                                                                                                |     |
|    |    | (i) a'b(d'+c'd)+b(a+a'cd) to one                                                                                                                                         |     |
|    |    | (ii) (a'+c)(a'+c')(a+b+c'd) to four                                                                                                                                      | 4M  |
|    | b) | What are the universal gates realize all gates using universal gates                                                                                                     | 10M |
| 3. | a) | Simplify the following Boolean expression using k-map                                                                                                                    |     |
|    |    | (i) $F(a,b,c,d) = a'b'c'd'+a'cd'+ab'd'+abcd+a'bd$                                                                                                                        |     |
|    |    | (ii) $F(a,b,c,d) = ab'c+a'b+ac'd$                                                                                                                                        | 6M  |
|    | b) | Simplify the following Boolean function using Quine Mc-Clusky method                                                                                                     |     |
|    |    | F(a,b,c,d) = m(0,2,3,6,7,8,9,10,13)                                                                                                                                      | 8M  |
| 4. | a) | Design a gray to binary code converter and implement using logic gates?                                                                                                  | 8M  |
|    | b) | Implement the following Boolean function with 8:1 mux                                                                                                                    |     |
|    |    | F(a,b,c,d) = (0,1,3,4,8,9,15)                                                                                                                                            | 6M  |
| 5. | a) | Compare PROM, PAL, PLA                                                                                                                                                   | 4M  |
|    | b) | Implement the following function using PLA                                                                                                                               |     |
|    |    | A(x,y,z) = (1,2,4,6) $B(x,y,z) = (0,1,6,7)$                                                                                                                              |     |
|    |    | B(x,y,z) = (0,1,6,7)<br>C(x,y,z) = (2,6)                                                                                                                                 |     |
|    |    | D(x,y,z) = (1,2,3,5,7)                                                                                                                                                   | 10M |
| 6. | a) | Design the counter that goes through states 0, 1, 2, 4, 0, using D flip-flops.                                                                                           | 8M  |
|    | b) | Convert SR flip flop to JK flip flop                                                                                                                                     | 6M  |
| 7. | a) | What are the capabilities and limitations of FSM                                                                                                                         | 6M  |
|    | b) | Draw the state diagram of mod-8 up-down counter in Moore model and obtain                                                                                                |     |
|    |    | its state table.                                                                                                                                                         | 8M  |
| 8. | a) | Draw the ASM chart for the following state transition, start from the initial state T1, then if xy=00 go to T2, if xy=01 go to T3, if xy=10 go to T1, otherwise go to T3 | 8M  |
|    | b) | Show the exit paths in an ASM block for all binary combinations of control variables x,y and z, starting from an initial state.                                          | 6M  |
|    |    |                                                                                                                                                                          |     |