Hall Ti	cket Number :													
ode : 1	GC32]]						R-11 /	′ R-13
Mov	II B.Tech. I S		Eng	ipple inee comm	ring	Mai	them	atic		ns No			015 03 Ho	
IVIAX		l Questio		swer carry	equa					s eacl		me.	03 110	ui S
1. a)	Find the Rank o	f the mat	rix A	$=\begin{bmatrix} 2\\4\\1\\1 \end{bmatrix}$	-2 2 -1 -2	0 0 0 1	6 2 3 2] b	y Re	educir	ng it to	o Cano	onica	al form.	7M
b)	Compute the E	igen valu	ies o	f the	matri	$\mathbf{x} A^{-1}$, if _	A =	2 2 1 3 1 2	$ \begin{array}{c} 1\\ 1\\ 2 \end{array} $				7M
2. a)	Compute the ro	oot of the	Equ	ation	$x.\log$	$g_{10}^{(x)}$	=1.2	usi	ng Fa	lse p	ositio	n me	ethod.	7M
b)	Using Newton $x \sin x + \cos x =$	•					Nur	nerio	cal r	oot o	of the	e Ec	quation	י 7M
3. a)	Obtain a relative $y(4) = 33.1$, $y(5)$				-							-	=15.4	, 7M
b)	Calculate the maintenance co				rrelat	ion I	oetwe	en	age	of ca	ars a	nd a	annual	7
	Age of cars Annual Mai cost (Ru	ntenance		2 160	0 1	4 500	6 180	0 ^	7 1900	8 170		0 00	12 2000	7M
4. a)	Solve $2z + p^2 +$	$qy + 2y^2$	= 0	by us	ing C	Charp	oit's N	/leth	od.					7M
b)	Form the Partia $x^2 + y^2 + (z-c)^2$		ential	equa	ation	by e	elimir	natin	g the	arbi	trary	cons	stants :	: 7M
5. a)	Find the Half-R that $\frac{1}{1^3} - \frac{1}{3^3} +$				- 2	f(x) =	= x(f	- <i>x</i>)	, in (0 < x <	<fa< td=""><td>nd E</td><td>Deduce</td><td></td></fa<>	nd E	Deduce	
b)	1 5	5 7			52	2.	. ()	1.1.			· 1			7M
6 a)	Obtain the Four					()						Sho	ow that	7M t
	$\int_{0}^{\Gamma} \frac{\sin x - \cos x}{x^3} dx$	$=\frac{f}{4}$.												14M
7. a)	A Random varia		as th		1	<u> </u>	babi	lity f	unctio	1				
	X 0 p(X) 0	1 k		2 2 <i>k</i>	3 27		4 3 <i>k</i>		5 k ²		$\frac{6}{2k^2}$		7 + k	
	(i) Determin													
	(ii) Evaluate										≤4).			
	(iii) If $p(X \leq (i + 1))$	4									, .			
	(iv) Determi	ne the di	strib	ution	funct	tion o	of X .	(v) l	Mean	(vi) \	/arian	ice		14M
8 a)	Define Binomia	l Distribu	ition	and c	deduo	ce M	ean a	and '	Varia	nce				7M

 b) In a Normal Distribution 31% of the items are under 45 and 8% are over 64. Find the Mean and Variance of the Distribution. 7M

Hall Tic	ket Number :														
Hall Tick Code :	ket Number : 1 G331											_		R-11	/ R-13
	II B.Tech. I S	Seme	este		•••					atio	ns N	lov/D	ec 2	015	
Electronic Circuits (Electronics & Communication Engineering) Max. Marks: 70 Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each)							ours								
1. a)	Describe the e	effects	s of o	differ	ent c	listor	tions	in a	mplif	iers					6M
b)	A CE amplifier load impedance h _{fe} =50 and h _d voltage gain A	ce is _{pe} =25	R∟= 5µA/	1100 V. C) .Tl comp	he h oute	para the	ameto curre	ers a ent g	are h ain /	ı _{ie} =1 A⊨,in	Κ,	h _{re} =	2x10 ⁻⁴	ļ,
2. a)	List the advan	tages	anc	d disa	advai	ntage	es of	RC o	coupl	ling.					4M
b)	Explain cascode amplifier and derive voltage gain.								10M						
3. a)	What is the effect of emitter bypass capacitor on low frequency response								7M						
b)	b) A CE amplifier have the h parameters h_{ie} =10K , and, h_{fe} =400. The circuit has R_s =600 , R_L =5K R_E =1K , V_{CC} =12V, R_1 =15K , R_2 =2.2K and C_E =50µF Compute the mid frequency voltage gain and lower 3-db point.														
4. a)	Why positive feedback is not suitable in amplifiers.							4M							
b)	Derive the fee current series					tanc	e ,vo	ltage	e gai	n an	d ou	itput r	resist	ance c	of 10M
5. a)	What is the co	nditio	on fo	r osc	illatio	ons									4M
b)	For the colipit feedback eler fraction, minim	ments	s C ₁	=0.0	18µF	=, C	₂ =0.1	6µF	finc	the	e va	lues	of fe	and the edbac	
6. a)	Give the class	ificati	on o	of lar	ge si	ignal	amp	lifiers	5						4M
b)	Explain compl	emen	ntary	sym	metr	y pu	sh pu	ıll am	nplifie	er					10M
7. a)	Derive the exp	oressi	on fo	or Q-	facto	or									4M
b)	Derive the rela	ation o	of ca	iscad	ding e	effec	t on k	band	width	n in s	ingle	tuneo	d am	plifier.	10M
8. a)	What is line ar			•											7M
b)	Explain the ne	cessi	ty of	ove	rload	l volt	age p	orote	ction						7M

Hall Ticket Number :								
Code : 1G236						R-11 /	R-13	
II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 <i>Electrical Circuit Theory</i> (Electronics & Communication Engineering)								
							: 03 Hours	
	Ansv	wer <i>any five</i>	e questior	ns				
Д	II Questions ca	arry equal n		Marks	s eac	h)		
1. a) Obtain the exp	pression for sta	r-delta equi	alence o	of resist	ive n	etwork?	7M	
b) current i= 10 e	e ^{-t} is applied to							
i. a 3 resist	or ii) a 2H ind	uctor and iii) a 0.1F d	capacite	or,			
What are the r	espective voltag	ges? Write de	own expre	ession f	or po	wer in each case.	7M	
2. a) Write steps in	volved in the M	esh Analysi	s with sui	itable e	xamp	ole?	6M	

b) Obtain currents through various elements in the circuit using nodal method

3. a) Define the following

i. RMS value ii. Average value iii. Form factor of an alternating quantity 6M

- b) Obtain the rms value, average value, form factor and peak factor for a voltage of symmetrical square shape whose amplitude is 10V and time period is 40secs.
 8M
- a) Derive the Expression for i(t) series R-L circuit when excited by a sinusoidal source.
 - b) For the RLC series circuit R=50hms, L=0.03H, C=100 microfarads. Determine the Frequency at which the circuit resonates. Also find the quality factor, voltage across the inductance, voltage across capacitance, at resonance
- 5. a) Explain three phase power measurement by 2 wattmeter method for star and delta connected load and determine the power equation and draw the phasor diagram 8M
 - b) A balanced abc-sequence Y-connected source with Van=100 10°V is connected to delta connected balanced load (8+j4) ohm per phase. Calculate the phase and line currents
 6M
- 6. a) Define MMf, Flux density, Magnetising force and Permeability and specify merits for each of the above quantities.
 6M
 - b) An iron ring 15Cms in diameter and 10Cm² in area of cross section is wound with a coil of 200 turns. Determine the current in the coil to establish a flux density of 1Wb/m² if the relative permeability of iron iron is 500. In case if an air gap of 2mm is cut in the ring, what is the current in the coil to establish the same flux density?

8M

8M

7M

7M

7M

7M

7M

7. a) Find the current through the 2 resistor using thevenins theorem?

b) Find the current i in the circuit shown in fig, given below using superposition theorem

- 8. a) State and explain compensation theorem?
 - b) Verify tellegen's theorem for circuit shown below?

7M

Hall Ticket Number :							
Code : 1G332							
II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 Pulse & Digital Circuits (Electronics & Communication Engineering) Max. Marks: 70 Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each)							
1. a) Derive the output and draw the response of high pass RC circuit for square wave input.							
b) What is an attenuator? Explain the under and over compensation in attenuator.	7M						
2. a) Draw the voltage comparator response for ramp input signal. State the comparator applications.							
 b) Design a diode clamper circuit to clamp the positive peaks of the inpu signal at zero level. The frequency of the input signal is 500 Hz. 	7M						
3. a) Explain the switching characteristics of transistor.	7M						
b) Explain the piecewise linear characteristics of diode	7M						
 a) Explain the operation of astable multivibrator with circuit diagram and relevant waveforms. 	l 7M						
b) Design a one shot multivibrator to develop an output pulse of 500-µsec duration. Assume $h_{fe(min)} = 25$, $I_{c(sat)} = 5$ mA, $V_{cc} = 10V$, and $V_{BF} = -4V$	с 7М						
 a) Derive the expression for slope error and sweep speed for the bootstrap sweep circuit. 	7M						
 b) Draw the simple current sweep circuit? Explain its working with the help o diagram. 	f 7M						
a) Draw the circuit of bidirectional sampling gate using diodes. Derive the expression for gain.	e 7M						
b) What do you mean by pedestal? How pedestal can be reduced in sampling gate.	7M						
 A) Explain the principle of synchronization and frequency division in blocking oscillator.) 7M						
b) Draw and explain the block diagram of frequency divider without phase jitter.	7M						
8. a) Explain the operation of a NANAD gate with the help of a circuit diagram.	7M						
 b) Draw the circuit diagram of COMS NOR and NAND gates and explain thei operation. 	7M						

Code : 1G333

Max. Marks: 70

R-11 / R-13

6M

8M

6M

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 *Random Variables and Random Processes*

(Electronics & Communication Engineering)

Time: 03 Hours

Answer *any five* questions All Questions carry equal marks (14 Marks each)

- 1. a) Define Joint, Conditional and Total Probability.
 - b) In a box there are 100 resisters having resistances and tolerances as shown in table. Let a resistor be selected from the box and assume each resistor has the same likelihood of being chosen. Define three events: A as "draw a 47 resistor", B as draw a resistor with 5% tolerance", and C as "draw a 100 resistor". Calculate P(A B), P(A C) P(B C), P(A/B), P(A/C) and P(B/C).

	Tolerance							
Resultance(?)	5%6	1.0%	Total					
22	10	14	24					
17	28	16	11					
100	24	8	- 32					
Total	62	38	100					

2. The exponential density function is given below. Calculate E[X], E[X²], σ_x^2 , Skew and coefficient of Skewness.

$$f_x(x) = \begin{cases} \frac{1}{b} e^{-(x-a)/b} & x > a \\ 0 & x < a \end{cases}$$
 14M

- 3. a) Define Joint characteristic function. How joint moments can found from Joint characteristic function.
 - b) Two random variables X and Y have zero-mean and its Joint characteristic function is given below. Assume X and Y are uncorrelated. Calculate R_{XY}.

$$\varphi_{X,Y}(\omega_1, \omega_2) = e^{(-2\omega_1^2 - 8\omega_2^2)}$$
 8M

4.	Define Linear time-invariant system. Derive the expression for Power density spectrum of response of linear time-invariant system.					
5.	Define noise band width and Explain Modeling of noise Sources?	14M				
6.	State Ergodic Theorem. Derive the expression for mean-Ergodic and correlation-Ergodic processes	14M				
7. a) b)	Define Cross-correlation function and Co-variance function. Explain Gaussian random processes	6M 8M				
8.	Derive relationship between Power spectrum density and Auto-correlation function	14M				