II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 Engineering Mathematics
(Common to EEE \& ECE)
Time: 03 Hours
Answer any five questions All Questions carry equal marks (14 Marks each)

1. a) Find the Rank of the matrix $A=\left[\begin{array}{cccc}2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2\end{array}\right]$ by Reducing it to Canonical form. 7M
b) Compute the Eigen values of the matrix A^{-1}, if $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
2. a) Compute the root of the Equation $x \cdot \log _{10}{ }^{(x)}=1.2$ using False position method.
b) Using Newton-Raphson method find a Numerical root of the Equation $x \sin x+\cos x=0$, which is near $x=\pi$.

7M
3. a) Obtain a relation of the form $y=a . b^{x}$ for the data $y(2)=8.3, \mathrm{y}(3)=15.4$, $y(4)=33.1, y(5)=65.2, y(6)=127.4$, by the Method of Least squares.
b) Calculate the coefficient of correlation between age of cars and annual maintenance cost and comment

Age of cars (years)	2	4	6	7	8	10	12
Annual Maintenance cost (Rupees)	1600	1500	1800	1900	1700	2100	2000

7M
4. a) Solve $2 z+p^{2}+q y+2 y^{2}=0$ by using Charpit's Method.
b) Form the Partial Differential equation by eliminating the arbitrary constants : $x^{2}+y^{2}+(\mathrm{z}-\mathrm{c})^{2}=a^{2}$
5. a) Find the Half-Range Sine series for $f(x)=x(\pi-x)$, in $0<x<\pi$ and Deduce that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots \ldots \ldots . .=\frac{\pi^{2}}{32}$
b) Obtain the Fourier series for $f(x)=x-x^{2}$ in the Interval $[-\pi, \pi]$.

6 a) Find the Fourier Transform of $f(x)=\left\{\begin{array}{l}a^{2}-x^{2}, \text { if }|x|<a \\ 0, \text { if }|x|>a>0\end{array}\right.$, and Hence Show that $\int_{0}^{\alpha} \frac{\sin x-\cos x}{x^{3}} d x=\frac{\pi}{4}$.
7. a) A Random variable X has the following probability function:

X	0	1	2	3	4	5	6	7
$p(X)$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

(i) Determine k.
(ii) Evaluate $p(X<6), p(X \geq 6), p(0<X<5)$ and $p(0 \leq X \leq 4)$.
(iii) If $p(X \leq k)>\frac{1}{2}$, Find the minimum value of k and
(iv) Determine the distribution function of X. (v) Mean (vi) Variance

8 a) Define Binomial Distribution and deduce Mean and Variance

[^0]Hall Ticket Number :

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015
 Electronic Circuits

(Electronics \& Communication Engineering)
Time: 03 Hours

Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Describe the effects of different distortions in amplifiers
b) $A C E$ amplifier is driven by a voltage source of internal resistance $R_{s}=600$ and
load impedance is $R_{L}=1100$.The h parameters are $h_{i e}=1 K, h_{r e}=2 \times 10^{-4}$,
$h_{f e}=50$ and $h_{o e}=25 \mu A / V$. Compute the current gain A_{I}, input resistance R_{i},
voltage gain A_{V} and output resistance R_{0} with exact model. $8 M$
2. a) List the advantages and disadvantages of RC coupling. 4M
b) Explain cascode amplifier and derive voltage gain. 10 M
3. a) What is the effect of emitter bypass capacitor on low frequency response 7M
b) A CE amplifier have the h parameters $\mathrm{h}_{\mathrm{ie}}=10 \mathrm{~K}$, and, $h_{\text {fe }}=400$. The circuit has
$R_{S}=600, R_{L}=5 \mathrm{~K} \quad R_{E}=1 \mathrm{~K}, V_{C c}=12 \mathrm{~V}, R_{1}=15 \mathrm{~K}, R_{2}=2.2 \mathrm{~K}$ and $C_{E}=50 \mu \mathrm{~F}$
Compute the mid frequency voltage gain and lower 3-db point.
4. a) Why positive feedback is not suitable in amplifiers. 4M
b) Derive the feedback, input resistance, voltage gain and output resistance of
current series feedback circuit
5. a) What is the condition for oscillations 4 M
b) For the colipitts oscillator using BJT in self-bias having $\mathrm{R}=1500$ and the feedback elements $\mathrm{C}_{1}=0.018 \mu \mathrm{~F}, \mathrm{C}_{2}=0.16 \mu \mathrm{~F}$ find the values of feedback fraction, minimum gain to sustain oscillations and emitter resistor R_{E}. 10M
6. a) Give the classification of large signal amplifiers 4 M
b) Explain complementary symmetry push pull amplifier 10 M
7. a) Derive the expression for Q-factor 4M
b) Derive the relation of cascading effect on bandwidth in single tuned amplifier. 10M
8. a) What is line and load regulations 7M
b) Explain the necessity of overload voltage protection 7 M

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 Electrical Circuit Theory
(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Obtain the expression for star-delta equivalence of resistive network?
b) current $\mathrm{i}=10 \mathrm{e}^{-t}$ is applied to
i. a 3 resistor ii) a 2 H inductor and iii) a 0.1 F capacitor, What are the respective voltages? Write down expression for power in each case.
2. a) Write steps involved in the Mesh Analysis with suitable example?
b) Obtain currents through various elements in the circuit using nodal method

3. a) Define the following
i. RMS value ii. Average value iii. Form factor of an alternating quantity 6 M
b) Obtain the rms value, average value, form factor and peak factor for a voltage of symmetrical square shape whose amplitude is 10 V and time period is 40 secs.
4. a) Derive the Expression for $i(t)$ series $R-L$ circuit when excited by a sinusoidal source.
b) For the RLC series circuit $\mathrm{R}=50 \mathrm{hms}, \mathrm{L}=0.03 \mathrm{H}, \mathrm{C}=100$ microfarads. Determine the Frequency at which the circuit resonates. Also find the quality factor, voltage across the inductance, voltage across capacitance, at resonance
5. a) Explain three phase power measurement by 2 wattmeter method for star and delta connected load and determine the power equation and draw the phasor diagram
b) A balanced abc-sequence Y-connected source with Van $=100 _10^{\circ} \mathrm{V}$ is connected to delta connected balanced load ($8+\mathrm{j} 4$) ohm per phase. Calculate the phase and line currents
6. a) Define MMf, Flux density, Magnetising force and Permeability and specify merits for each of the above quantities.
b) An iron ring 15 Cms in diameter and $10 \mathrm{Cm}^{2}$ in area of cross section is wound with a coil of 200 turns. Determine the current in the coil to establish a flux density of $1 \mathrm{~Wb} / \mathrm{m}^{2}$ if the relative permeability of iron iron is 500 . In case if an air gap of 2 mm is cut in the ring, what is the current in the coil to establish the same flux density?
7. a) Find the current through the 2 resistor using thevenins theorem?

b) Find the current i in the circuit shown in fig, given below using superposition theorem

8. a) State and explain compensation theorem?
b) Verify tellegen's theorem for circuit shown below?

\square

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015
Pulse \& Digital Circuits
(Electronics \& Communication Engineering)
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Derive the output and draw the response of high pass $R C$ circuit for square
wave input.
b) What is an attenuator? Explain the under and over compensation in attenuator. 7M
2. a) Draw the voltage comparator response for ramp input signal. State the
comparator applications.
b) Design a diode clamper circuit to clamp the positive peaks of the input
signal at zero level.The frequency of the input signal is 500 Hz . 7 M
3. a) Explain the switching characteristics of transistor. 7M
b) Explain the piecewise linear characteristics of diode 7 M
4. a) Explain the operation of astable multivibrator with circuit diagram and relevant waveforms.

7M
b) Design a one shot multivibrator to develop an output pulse of $500-\mu \mathrm{sec}$
duration. Assume $h_{f e(\min)}=25, I_{c(\text { sat })}=5 \mathrm{~mA}, V_{c c}=10 \mathrm{~V}$, and $V_{B E}=-4 \mathrm{~V} \quad 7 \mathrm{M}$
5. a) Derive the expression for slope error and sweep speed for the bootstrap sweep circuit.

7M
b) Draw the simple current sweep circuit? Explain its working with the help of
diagram.
6. a) Draw the circuit of bidirectional sampling gate using diodes. Derive the expression for gain.
b) What do you mean by pedestal? How pedestal can be reduced in sampling gate. 7M
7. a) Explain the principle of synchronization and frequency division in blocking oscillator.
b) Draw and explain the block diagram of frequency divider without phase jitter.
8. a) Explain the operation of a NANAD gate with the help of a circuit diagram. 7M
b) Draw the circuit diagram of COMS NOR and NAND gates and explain their operation.

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 Random Variables and Random Processes
(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Define Joint, Conditional and Total Probability.
b) In a box there are 100 resisters having resistances and tolerances as shown in table. Let a resistor be selected from the box and assume each resistor has the same likelihood of being chosen. Define three events: A as "draw a 47 resistor", B as draw a resistor with 5% tolerance", and C as "draw a 100 resistor". Calculate $\mathrm{P}(\mathrm{A} \cap \mathrm{B}), \mathrm{P}(\mathrm{A} \cap \mathrm{C}) \mathrm{P}(\mathrm{B} \cap \mathrm{C}), \mathrm{P}(\mathrm{A} / \mathrm{B}), \mathrm{P}(\mathrm{A} / \mathrm{C})$ and $\mathrm{P}(\mathrm{B} / \mathrm{C})$.

	Tolcranco		
Re:un:inumece(?)	5%	10%	Total
22	10	14	24
17	28	16	14
100	21	6	32
Tulal	62	38	100

2. The exponential density function is given below. Calculate $\mathrm{E}[\mathrm{X}], \mathrm{E}\left[\mathrm{X}^{2}\right], \sigma_{x}^{2}$, Skew and coefficient of Skewness.

$$
f_{x}(x)= \begin{cases}\frac{1}{b} e^{-(x-a) / b} & x>u \\ 0 & x<u\end{cases}
$$

3. a) Define Joint characteristic function. How joint moments can found from Joint
characteristic function.
b) Two random variables X and Y have zero-mean and its Joint characteristic function is given below. Assume X and Y are uncorrelated. Calculate R_{xy}.

$$
\psi_{K, Y}\left(\omega_{1}, \omega_{2}\right)=e^{\left(-2 \omega \frac{1}{3}-8 \omega \bar{j}\right)}
$$

4. Define Linear time-invariant system. Derive the expression for Power density spectrum of response of linear time-invariant system. 14M
5. Define noise band width and Explain Modeling of noise Sources? 14M
6. State Ergodic Theorem. Derive the expression for mean-Ergodic and correlation-Ergodic processes 14M
7. a) Define Cross-correlation function and Co-variance function. 6M
b) Explain Gaussian random processes 8M
8. Derive relationship between Power spectrum density and Auto-correlation function 14M

[^0]: b) In a Normal Distribution 31\% of the items are under 45 and 8% are over 64 . Find the Mean and Variance of the Distribution.

