II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015

Probability & Statistics

(Computer Science & Engineering)

Max. Marks: 70

Answer any five questions

All Questions carry equal marks (14 Marks each)

1 a) An incomplete frequency distribution is given as follows

1 8	a)	An incomplete	frequ	iency	distr	ibutio	on is	giver	n as f	ollov	vs										
								Variable	10 -	- 20	20 -	- 30	30 -	- 40	40 -	- 50	50 - 60		60 - 70	70 70	0– 80
		Frequency	1	2	3	0		?	6	5		?	25		18						
		If the media	an va	lue is	46 tl	nen f	ind th	ne mi	ssing	frec	quenc	cies.		·							
k	c)	Find the rank	Corre	elatio	n coe	efficie	ent fo	r the	follo	wing	data										
			Χ	68	64	75	50	64	80	75	40	55	64								
			Υ	62	58	68	45	81	60	68	48	50	70								
8	a)	Define (i) Sample	Sna	~		(ii)	even	t													
		(iii) Outcom	•			• •	proba		/												
Ł	c)	State and pro	ve M	ultipli	catio	n the	orem	on p	oroba	bilitv	, for t	wo ev	/ents.								
З. a	·	Define		•				•		,											
	,	(i) Randor	n vari	able				(ii)	Prob	abilit	ty ma	iss fu	nction								
		(iii) Probab	ility d	ensity	y funo	ction.															
k	c)	If a fair coin is					or five	e tail	s occ	urs 1	then	find th	ne mea	in and							
		variance of a r																			
. 8	,	Show that the																			
k	c)	The mean of a																			
_		(i) The value o		, ,		•	, ,			. ,	`	< 6) 									
5		A population c size two, whi													•						
		i) the mean of							•				• •								
		sample iv) Th	• •								•	•	,								
6 a	a)	Explain i) Maxi																			
L	-)	ii) Coni						-	-	•				00 F							
Ľ)	A sample of si maximum error						рорі	Jiatio	n 5.	D. 01	sam	pie is .	.03. FI	na the						
7 8	a)	Write Null Hyp					-	lvpot	hesis	5											
	5)	A sample of 4									مەمە	stand	lard de	viation	n is 10						
ĸ	5)	The mean of						• •													
		population with	n mea	n 38	. Also	o, cal	culate	e 959	% co	nfide	nce i	nterva	al.								
8		A die is throwr	n 60 t	imes	with	the fo	ollowi	ing re	esults	5.											
				F	ace		1	2	3	4	5	6									

⊢ace	1	2	3	4	5	6
Frequency	8	7	12	8	14	11

Test at 5% level of significance if the die is honest.

R-11 / R-13

Time: 03 Hours

14M

W.W. Cha	Ren														(52)
W.		с, •	a												
	Hall Ti	cket Number :						-							
	Code :	1G131												R-11	/ R-13
		II B.Tech. I S		nced I	Data s	Stru	ctur	es T	hroi)ec 2	015	данцина
	Ма	. Marks: 70			Comn				-			Т	ime:	03 Ho	ours
		A	ll Ques	Ans stions c	swer a arry o	-	l ma	•			seac	:h)			
	1. a)	Define Class?	Explaiı	n about	inline	e fun	ction	with	Exa	mple	•				6M
	b)	Explain about o	dynami	c mem	ory al	llocat	ion a	and d	le-all	ocati	on				8M
	2. a)	Explain the co	ncept	of func	tion o	verlo	adin	g an	id op	erato	or ov	erloa	ding	with a	
	b)	example. Explain Base C	lass a	nd Der	ived (Class	with	Exa	mple) .					7M 7M
	-	Define Abstrac													. 7M 7M
	U)	How we can m	easure	ine pe	nonn		01 a	n alg	juntin	111 f L	JISCU	55 11	uela	н.	7 171
	4.	Define Hash Ta	able? [Discuss	in de	etail a	bout	colli	sion	resol	lutior	n tecł	nniqu	e?	14M
	5. a)	Define and exp	lain in	detail a	about	Prior	ity Q	ueue	ə AD	Т.					4M
	b)	Explain about e	externa	l sortin	g and	l Mul	ti wa	y me	erge.						10M
	6 a)	Define AVL Tr illustrations.	ees? I	Explain	varic	ous s	teps	for	AVL	sear	ch tr	ree ii	nserti	ion with	ר 5M
	b)	Define Binary 7 Preorder: A B D		•		•							•	order.	9M
	7. a)	Describe insert	ion op	eration	of a E	3-tree	e with	n an	exan	nple.					~ 7M
	b)	Explain about s	splay tr	ees.											7M
	8. a)	Write and expla	ain the	Knuth-	Morri	s-Pra	itt alg	gorith	nm w	ith sı	uitabl	le alg	jorithi	m.	7M
	b)	Write and expla	ain Bru	te force	e algo	rithm	l.								7M

Code : 1G235

5.	a)	Explain different methods of excitation of D.C generators with suitable diagrams. 10									
	b)	What is the Significance of The Back E.M.F of a D.C motor?									
6.	a)	Define voltage regulation and efficiency of a transformer. Deduce the expression for the voltage regulation with lagging power factor.	7M								
	b)	The iron and full load copper loss in a 40KVA 1 phase transformer are 450 W and 850 W respectively. Find									
		i. Efficiency at full load when the power factor of the load is 0.8 lagging									
		ii. The maximum efficiency and									
		iii. The load at which the maximum efficiency occurs.	7M								
7.	a)	Explain the working principle of three phase induction motor.	7M								
	b)	A 6 pole induction motor is fed by three phase 50HZ supply and running with a full load slip of 3%. Find the full load speed of induction motor and also the									
		frequency of rotor emf.	7M								
8.	a)	Explain with neat sketch the construction and working of MC type instrument.	7M								
	b)	Write the errors occurring in a moving coil instrument	7M								

	cket Number :									
Code :	1G132 R-11 /	R-13								
II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015										
Digital Logic Design										
Мах	(Computer Science & Engineering) Max. Marks: 70 Time: 03 Hours									
	Answer any five questions									
	All Questions carry equal marks (14 Marks each)									
1. a)	Convert the following to binary, then to Octal. i) F37A.B2 ii) 2DE5.6A	7M								
b)	Convert the following to binary, then to hexadecimal i) 735.5 ii) 367.236	7M								
2. a)	Find the Demorgan equivalent to $F = x(y + z')$. Draw the truth table showing									
	equality among equations.	7M								
b)	Let $P = x'yz' + x'yz + xyz' + xyz$. eliminate the redundant terms.	7M								
3. a)	Simplify the following three variable equation $J = f(x,y,z) = (0,2,3,4,5,7)$.	5M								
b)	Consider the following three-variable multiple output system. The objective is									
	to find a minimal covering for all of the Systems output functions. $F_1 = f(a,b,c) = (2,4,5,6)$									
	$F_1 = f(a,b,c) = (2,3,6,7)$ $F_2 = f(a,b,c) = (2,3,6,7)$									
	$F_3 = f(a,b,c) = (2,5,6,7)$	9M								
4. a)	Implement a single-bit binary half adder to add two single-bit binary values to									
	produce sum and a carry output.	8M								
b)	Explain how to realize two bit binary comparator on two operands.	6M								
5. a)	Explain clocked D Flip-Flop with truth table.	6M								
b)	Explain Ring Counter (Synchronous) with timing diagram.	8M								
6. a)	Explain the problem of Races and Cycles in asynchronous machines.	10M								
b)	Explain design process for fundamental and pulse mode asynchronous circuits.	4M								
7. a)	Explain ROM with block diagram.	6M								
b)	Explain PLA with an example.	8M								
8. a)	Explain analysis principles for Synchronous circuits.	8M								
b)	Define state equivalence and give the properties of equivalent states.	6M								

Hall Tic	ket Number :							
Code : ²	IG334 R-11 / R-	13						
	II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 <i>Electronic Devices and Circuits</i> (Common to CSE & IT)							
Max. Marks: 70 Time: 03 Hours								
	Answer <i>any five</i> questions All Questions carry equal marks (14 Marks each)							
1. a)	Draw the energy band diagram of PN junction diode under open circuit condition and explain.	10M						
b)	Find the value of dc resistance and ac resistance of a Ge diode at 25° c with $I_c = 25\mu$ A and at an applied voltage of 0.2V across the diode.	4M						
2. a)	 Derive the expression for the following using FWR: i) Average DC current (I_{DC}) ii) Average DC voltage (V_{DC}) iii) Ripple factor() 							
	iv) Efficiency()	8M						
b)	A full wave rectified voltage of 18V peak is applied across a 500µF capacitor filter. Calculate the ripple factor if load takes a average current of 100mA.Assume supply frequency 50Hz.	6M						
3. a)	Draw the circuit diagram of a BJT in CB configuration and explain its input and output characteristics with neat sketch.	10M						
b)	Calculate the value of I_C and I_E for a transistor with $\stackrel{\text{tor}}{=} = 0.99$ and $I_{CBO} = 5\mu A$, I_B is measured as $20\mu A$.	4M						
4. a)	Define the following: i) S ii) S ¹ iii) S ¹¹	6M						
b)	Give the analysis of a voltage –divider bias and derive the expression for stability factor.	8M						
5. a)	Explain the construction and operation of N-channel JFET with neat sketch.	8M						
b)	Distinguish between BJT and FET.	6M						
6. a)	For CE configuration derive the expression for current gain (A _i), Voltage gain (A _v), input resistance (R _i) and output resistance (R ₀) in terms of h-parameters.	7M						
b)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7M						
7. a)	Draw the circuit diagram of a voltage series feedback amplifier and derive the expression for input resistance and output resistance.	7M						
b)	Calculate the gain , input resistance and output resistance of voltage series feedback amplifier having A= -300, R_i =1.5K $$, R_0 =50K $$, and $$ = -1/20 $$	7M						
8. a)	Show that the gain of wien bridge oscillator using BJT amplifier must be at least 3 for the oscillation to occur.	8M						
b)	A crystal oscillator has L=2H, C= 0.01 pF and R=2K . Its mounting capacitance is 2pF.Calculate it series and parallel resonating frequency.	6M						

Code	: 1	G133 R-11 / R	-13					
		II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 <i>Mathematical Foundations of Computer Science</i>						
Ма	(Common to CSE & IT) Max. Marks: 70 Time: 03 Hours							
		Answer <i>any five</i> questions All Questions carry equal marks (14 Marks each)						
1. a	a)	Show that ((P V Q) \sim (~ P (~ Q V ~R))) V (~ P ~Q) V (~P ~R) is a tautology	7M					
b))	Obtain the product-of-sums canonical forms of (P $$ Q $$ R) V (~P $$ R $$ Q) V (~P $$ ~Q $$ ~R)	7M					
2. a	a)	Show that the following premises are inconsistent i. If Jack misses many classes through illness, then he fails high school ii. If Jack fails high school, then he is uneducated iii. If Jack reads a lot of books, then he is not uneducated iv. Jack misses many classes through illness and reads a lot of books	7M					
b))	Show that $(x)(P(x) \rightarrow Q(x))$ $(x)(Q(x) \rightarrow R(x)) ==> (x)(P(x) \rightarrow R(x))$	7M					
3. a	a)	Let X= $\{1,2,3,4,5,6,7\}$ and R= $\{(x,y) x-y \text{ is divisible by 3}\}$. Show that R is an equivalence relation. Draw the graph of R.	7M					
Ł))	For the equivalence relation $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)\}$ defined on the set A={1,2,3,4}. Find the partition of A induced by R.	7M					
4. a	a)	For any elements a,b in a group G, we have (i) $(a^{-1})^{-1}=a$ (ii) $(ab)^{-1}=b^{-1}a^{-1}$	7M					
b))	Prove that the cube roots of unity form a group under the usual multiplication	7M					
5.		State and prove Pigeon hole principle. Give one application of pigeon hole principle	14M					
6. a	a)	Solve the Fibonacci recurrence relation	7M					
b))	Solve the recurrence relation $a_n-3a_{n-1}=5*3^n$, $n>=1$, $a_0=2$ by the method of generating functions	7M					
7. a	a)	Show that the sum of the degrees of all the vertices in a graph is an even number and this number is equal to twice the number of edges in the graph.	7M					
b))	Define Minimal Spanning tree. Write Prim's algorithm to construct minimal spanning tree	7M					
8. a	a)	Find the complement of the complete bipartite graph $K_{3,3}$	7M					
b)	Verify that the complete graph K_5 has cycles with lengths 3,4,5	7M					
		at at the						