\square

Code: 1G235

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015

Basic Electrical Engineering

(Common to CSE \& IT)
Max. Marks: 70

> Answer any five questions

All Questions carry equal marks (14 Marks each)

1. a) Explain the following terms:
i. Charge
ii. Electric potential
iii. Potential difference
iv. Electric current
b) Find the source current in figure below?

2. a) Define and explain Kirchhoff's law
b) Find the current through and the voltage across all the elements by using Kirchhoff's laws as shown in figure

3. a) Derive the expressions for ac through series RC circuit.
b) Calculate the resistance and inductance or capacitance in series for each of the following impedances assumes the frequency to be 60 Hz . (i) $12+\mathrm{j} 30$ ohms, (ii) -j 60 ohms (iii) $20 \angle 60^{\circ}$ ohms
4. a) Derive the relation between phase and line values of a 3-phase balanced delta connected system.
b) Three impedances $(3+\mathrm{j} 4)$ ohm, $(5+\mathrm{j} 0)$ ohm and ($2-\mathrm{j} 2$) ohm are connected in delta to a $100 \mathrm{~V}, 3-$ phase, and 50 Hz balanced supply. Calculate the line currents and total power consumed
5. a) Explain different methods of excitation of D.C generators with suitable diagrams. 10M
b) What is the Significance of The Back E.M.F of a D.C motor? 4M
6. a) Define voltage regulation and efficiency of a transformer. Deduce the expression for the voltage regulation with lagging power factor. 7Mb) The iron and full load copper loss in a 40KVA 1 phase transformer are 450 Wand 850 W respectively. Findi. Efficiency at full load when the power factor of the load is 0.8 laggingii. The maximum efficiency and
iii. The load at which the maximum efficiency occurs. 7M
7. a) Explain the working principle of three phase induction motor. 7M
b) A 6 pole induction motor is fed by three phase 50 HZ supply and running with afull load slip of 3%. Find the full load speed of induction motor and also thefrequency of rotor emf.7M
8. a) Explain with neat sketch the construction and working of MC type instrument. 7M
b) Write the errors occurring in a moving coil instrument 7M

Hall Ticket Number : \square

Code: 1G131

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015 Advanced Data Structures Through C++
(Common to CSE \& IT)
Max. Marks: 70
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Define Class? Explain about inline function with Example. 6M
b) Explain about dynamic memory allocation and de-allocation
2. a) Explain the concept of function overloading and operator overloading with an
example.
b) Explain Base Class and Derived Class with Example. 7M
3. a) Define Abstract Data Type? Explain the implementation of stack ADT in details. 7 M
b) How we can measure the performance of an algorithm? Discuss in detail. 7 M
4. Define Hash Table? Discuss in detail about collision resolution technique? 14 M
5. a) Define and explain in detail about Priority Queue ADT. 4M
b) Explain about external sorting and Multi way merge. 10M

6 a) Define AVL Trees? Explain various steps for AVL search tree insertion with
illustrations.
b) Define Binary Tree? Explain Binary Tree Traversal with below example.
Preorder: A B D G C E H F F In-order: D B G A H EIC F. Construct post order. 9M
7. a) Describe insertion operation of a B-tree with an example. 7M
b) Explain about splay trees. 7 M
8. a) Write and explain the Knuth-Morris-Pratt algorithm with suitable algorithm. 7 M
b) Write and explain Brute force algorithm. 7M

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015

Electronic Devices and Circuits

(Common to CSE \& IT)
Max. Marks: 70
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Draw the energy band diagram of PN junction diode under open circuit condition and explain.
b) Find the value of dc resistance and ac resistance of a Ge diode at $25^{\circ} \mathrm{c}$ with $\mathrm{I}_{\mathrm{c}}=25 \mu \mathrm{~A}$ and at an applied voltage of 0.2 V across the diode.
2. a) Derive the expression for the following using FWR:
i) Average DC current ($\mathrm{IDC}_{\mathrm{D}}$)
ii) Average DC voltage $\left(\mathrm{V}_{\mathrm{DC}}\right)$
iii) Ripple factor (Y)
iv) Efficiency(η)
b) A full wave rectified voltage of 18 V peak is applied across a $500 \mu \mathrm{~F}$ capacitor filter. Calculate the ripple factor if load takes a average current of 100 mA .Assume supply frequency 50 Hz .
3. a) Draw the circuit diagram of a BJT in CB configuration and explain its input and output characteristics with neat sketch.
b) Calculate the value of I_{C} and I_{E} for a transistor with ${ }_{\text {cor }}^{\text {ores }}:=0.99$ and $I_{C B O}=5 \mu \mathrm{~A}, I_{B} \quad 4 \mathrm{M}$
is measured as $20 \mu \mathrm{~A}$.
4. a) Define the following: i) S ii) S^{1} iii) S^{11}
b) Give the analysis of a voltage -divider bias and derive the expression for stability
factor.
5. a) Explain the construction and operation of N -channel JFET with neat sketch.
b) Distinguish between BJT and FET.
6. a) For CE configuration derive the expression for current gain $\left(A_{i}\right)$, Voltage gain $\left(A_{v}\right)$, input resistance (R_{i}) and output resistance (R_{0}) in terms of h-parameters.
b) Common collector amplifier having $\mathrm{R}_{\mathrm{s}}=1 \mathrm{~K}, \quad \mathrm{R}_{1}=10 \mathrm{~K}, \quad \mathrm{R}_{2}=10 \mathrm{~K}, \quad \mathrm{R}_{\mathrm{E}}=5 \mathrm{~K}$, $R_{L}=20 \mathrm{~K}$, the transistor parameters are $h_{i c}=1.2 \mathrm{~K}, h_{f c}=-101, h_{r c}=1$ and $h_{o c}=25 \mu \mathrm{~A} / \mathrm{V}$. Calculate A_{i}, R_{i}, A_{v} and R_{0}.
7. a) Draw the circuit diagram of a voltage series feedback amplifier and derive the expression for input resistance and output resistance.
b) Calculate the gain, input resistance and output resistance of voltage series
feedback amplifier having $A=-300, R_{i}=1.5 \mathrm{~K} \quad, R_{0}=50 \mathrm{~K}$, and $\beta=-1 / 20 \quad 7 \mathrm{M}$
8. a) Show that the gain of wien bridge oscillator using BJT amplifier must be at least 3 for the oscillation to occur.
b) A crystal oscillator has $\mathrm{L}=2 \mathrm{H}, \mathrm{C}=0.01 \mathrm{pF}$ and $\mathrm{R}=2 \mathrm{~K}$. Its mounting capacitance is $2 p F$.Calculate it series and parallel resonating frequency.

Code: 1G133

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2015
 Mathematical Foundations of Computer Science

(Common to CSE \& IT)
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Show that $((P \vee Q) \wedge \sim(\sim P \wedge(\sim Q \vee \sim R))) \vee(\sim P \wedge \sim Q) \vee(\sim P \wedge \sim R)$ is a tautology
b) Obtain the product-of-sums canonical forms of $(P \wedge Q \wedge R) V(\sim P \wedge R \wedge Q) \vee$ $(\sim P \wedge \sim Q \wedge \sim R)$
2. a) Show that the following premises are inconsistent
i. If Jack misses many classes through illness, then he fails high school
ii. If Jack fails high school, then he is uneducated
iii. If Jack reads a lot of books, then he is not uneducated
iv. Jack misses many classes through illness and reads a lot of books
b) Show that $(x)(P(x) \rightarrow Q(x)) \wedge(x)(Q(x) \rightarrow R(x))==>(x)(P(x) \rightarrow R(x)) \quad 7 M$
3. a) Let $X=\{1,2,3,4,5,6,7\}$ and $R=\{(x, y) \mid x-y$ is divisible by 3$\}$. Show that R is an equivalence relation. Draw the graph of R.
b) For the equivalence relation $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)\}$ defined on the set $A=\{1,2,3,4\}$. Find the partition of A induced by R.
4. a) For any elements a, b in a group G, we have (i) $\left(a^{-1}\right)^{-1}=a$ (ii) $(a b)^{-1}=b^{-1} a^{-1}$
b) Prove that the cube roots of unity form a group under the usual multiplication
5. State and prove Pigeon hole principle. Give one application of pigeon hole principle
6. a) Solve the Fibonacci recurrence relation
b) Solve the recurrence relation $a_{n}-3 a_{n-1}=5^{*} 3^{n}, n>=1, a_{0}=2$ by the method of generating functions
7. a) Show that the sum of the degrees of all the vertices in a graph is an even number and this number is equal to twice the number of edges in the graph.
b) Define Minimal Spanning tree. Write Prim's algorithm to construct minimal spanning tree
8. a) Find the complement of the complete bipartite graph $\mathrm{K}_{3,3} \quad 7 \mathrm{M}$
b) Verify that the complete graph K_{5} has cycles with lengths $3,4,5 \quad 7 \mathrm{M}$
