Code: 7GC32

II B.Tech. I Semester Regular Examinations November 2018 Engineering Mathematics - III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find a real root of the equation $x^{3}-3 x-5=0$ by the method of false position correct to three decimal places.
b) Find the real root of the equation $x=e^{-x}$ using Newton-Raphson method.

OR

2. a) Employ Taylor's method to obtain the approximate values of y at $x=0.1,0.2$ for the differential equation $\frac{d y}{d x}=x-y^{2}, y(0)=1$.
b) Apply Runge-Kutta method of order 4, compute $y(0.2)$ and $y(0.4)$ from the equation $\frac{d y}{d x}=x+y, y(0)=1$.

UNIT-II

3. a) The population of a town in the decennial census was given below

Year : x	1891	1901	1911	1921	1931
Population: y (in thousands)	46	66	81	93	101

Estimate the population for the year 1895.
b) Use Lagrange's interpolation formula to find the value of y when $x=3.5$ from the following table

x	0	1	3	4
y	-12	0	12	24

OR
4. a) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	4.0
y	3.375	7.0	13.625	38.875	59

b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using
(i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule, (iii) Simpson's $\frac{3}{8}$ rule with $h=0.5$ and 0.25

UNIT-III

5. a) Find the values of a, b and c so that $y=a+b x+c x^{2}$ is the best fit to the data

x	0	1	2	3	4
y	1	0	3	10	21

b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
6. a) Determine the values of a and b by the method of least squares such that $y=a e^{b x}$ fits the following data

x	0	1	2	3
y	1.05	2.10	3.85	8.30

b) Solve $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}=0$ by employing the method of separation of variables.

UNIT-IV

7. Prove that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}},-\pi<x<\pi$ by using Fourier series and hence show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

OR

8. Obtain a half range cosine series for $f(x)=\left\{\begin{array}{c}k x, 0 \leq x \leq l / 2 \\ k(l-x), l / 2 \leq x \leq l\end{array}\right.$ and deduce the sum of the series is $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

UNIT-V

9. a) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}a^{2}-x^{2}, & \text { for }|x| \leq a \\ 0, & \text { for }|x|>a\end{array}\right.$
b) Find the Fourier cosine transform of $e^{-a x}(a>0)$. Hence Evaluate $\int_{0}^{\infty} \frac{\cos \lambda x}{x^{2}+a^{2}} d x$

OR

10. Obtain the Fourier sine transfromation of

$$
f(x)=\left\{\begin{array}{cc}
4 x, & \text { for } 0<x<1 \\
4-x, & \text { for } 1<x<4 \\
0, & \text { for } x>4
\end{array}\right.
$$

\square

|| B.Tech. I Semester Regular Examinations November 2018

Building Materials and Construction

(Civil Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is meant by quarrying state the methods of quarrying? 4M
b) Give the list of explosives used in blasting and explain their composition.

OR
2. Explain the process of manufacture of Bricks and differentiate Clamp Burning
and Kiln Burning.

UNIT-II

3. a) Describe in detail how lime is manufactured?
b) Distinguish between quick, fat and hydraulic lime?

OR

4. a) List different types of Cement? 4 M
b) Discuss various methods of manufacturing of cement?

UNIT-III

5. a) Explain briefly about alternative materials for wood.
b) What is seasoning of timber? State the objects of seasoning. 7 M

OR
6. a) Short note on teak wood? 4M
b) Explain the classification of wood used in buildings in detail? 10 M

UNIT-IV 7. List various types of foundations and Explain them? OR	14 M

8. Explain English bond and Flemish bond with neat sketches. 14M

UNIT-V
9. a) What are the different types of roofs explain any two? 7M
b) Explain about form work and scaffoldings? 7 M

OR

10. a) How do you classify various types of paints? Explain in detail each type. 7M
b) Explain coupled roof with sketch.

Hall Ticket Number : \square
Code: 7G537

II B.Tech. I Semester Regular Examinations November 2018

Electrical \& Mechanical Technology
(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
Use separate booklets for Part-A \& Part-B

PART-A

UNIT-I

1. a) Define (i) Electrical circuit (ii) Potential Difference
(iii) Power (iv) Energy
b) Determine current in all resistors.

2. a) Explain the principle of operation of $D C$ generator.
b) Explain characteristics and applications of DC motors. 8 M

UNIT-II
3. a) (i) Define Efficiency and Regulation of a transformer.
(ii) Explain the losses present in a transformer.

8M
b) A single-phase transformer has transformation ratio of 5 . Primary is connected to $40 \mathrm{~V}, 50 \mathrm{~Hz} A C$ supply and $N_{1}=100$ turns. Find secondary voltage and N_{2}.

OR

4. a) Differentiate salient pole and non-salient pole type rotors.
b) A $3-\Phi$ induction motor is wound for 4 pole and supplied from 50 Hz supply. Calculate
(i) Synchronous speed (ii) Speed of the motor when slip is 4%.
(iii) Rotor frequency when speed of rotor is 900 rpm .

PART-B

UNIT-III

5. a) Describe the working principle of gas welding. Discuss in brief the equipment required for Oxy - acetylene welding? 7M
b) Compare A.C. and D.C. arc welding 7M
OR
6. a) What are the essential characteristics of a flux? 7M
b) Explain submerged arc welding with a neat diagram and state advantages of it. 7M
UNIT-IV
7. a) Explain the working of a four stroke C.I. engine with the help of a neat sketch? 7M
b) Explain in detail splash lubrication system with a neat sketch. 7M
OR
8. a) Explain the principle of air compressor and discuss the working of a multi-stage reciprocating air compressor. 7M
b) Define IC engine. Compare SI and Cl engines with respect to
(i) Basic Cycle (ii) Fuel used (iii) Introduction of fuel (iv) Ignition and (v) Weight 7M
UNIT-V9. a) Explain commonly used refrigerants in refrigeration systems with their properties?7M
b) Explain the working of vapour absorption refrigeration system and state its advantages and disadvantages? 7M
OR
9. a) Define air-conditioning. Explain room air-conditioning system with a neat sketch. 7M
b) Sketch the layout of an air conditioning system and explain the functions of each component in it 7M
\square
Code: 7G632

II B.Tech. I Semester Regular Examinations November 2018
 Fluid Mechanics

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) At a depth of 8 km below the surface of ocean, the pressure is $82 \mathrm{MN} / \mathrm{m}^{2}$. Determine the density of sea water at this depth if the density at the surface is $1025 \mathrm{~kg} / \mathrm{m}^{3}$ and bulk modulus $\mathrm{K}=2350 \mathrm{MN} / \mathrm{m}^{2}$ for this pressure range. Calculate also the percentage change in specific volume and specific gravity.
b) Calculate the capillary effect in glass tube of 5 mm diameter when immersed in (i) water and (ii) in mercury. Take
v (water in contact with air) $=0.075 \mathrm{~N} / \mathrm{m}$
v (mercury in contact with air) $=0.52 \mathrm{~N} / \mathrm{m}$
$\rho($ water $)=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and ρ (mercury) $=13600 \mathrm{~kg} / \mathrm{m}^{3}$
The contact angle for water is 0° and formercury is 130°.

OR

2. A differential manometer is connected to two pipes whose centres are at 3 m difference in height. Higher level pipe is carrying liquid of specific gravity of 0.9 at a pressure of 1.8 bar and another pipe is carrying liquid at specific gravity of 1.5 at a pressure of 1 bar. The centre of pipe carrying low pressure liquid is 2 m above the higher level of the mercury in the manometer. Find out the difference in mercury level in the manometer.

UNIT-II

3. a) Write short notes on kinetic energy correction factor.
b) Define stream line, path line, streak line and stream tube.

OR

4. 260 litres $/ \mathrm{s}$ of water is flowing in a pipe having a diameter of 300 mm If the pipe is bent by 135° (that is change from initial to final direction is 135°), find the magnitude and direction of the resultant force on the bend. The pressure of water flowing is $39.24 \mathrm{~N} / \mathrm{cm}^{2}$.

UNIT-III

5. Derive Darcy's Weisbach equation.

OR

6. a) Compare and contrast venturimeter and orifice meter.
b) Find the discharge through a fully sub-merged orifice of width 3 m if the difference of water levels on both sides of the orifice be 60 cm . The height of water from top and bottom of the orifice are 3.5 m and 3.75 m respectively. Take $\mathrm{C}_{\mathrm{d}}=0.6$.

UNIT-IV

7. An oil of sp . gr $=0.85$ and viscosity of 2.5 pulse is flowing through a 30 cm diameter pipe. The length of pipe is 2.5 km and head loss is 20 m .

Find out (a) Shear stress at the pipe wall.
(b) Shear stress at $\mathrm{a}=10 \mathrm{~cm}$ from the centre of the pipe.
(c) The value of friction factor ' f ' if the flow is laminar.

OR

8. a) Explain Reynold's experiment.
b) A pipe-line carrying water has average height of irregularities projecting from the surface of the boundary of the pipe as 0.15 mum. What type of boundary is it? The shear stress developed is $4.9 \mathrm{~N} / \mathrm{m}^{2}$. The kinematic viscosity of water is .01 stokes.

UNIT-V

9. Derive on the basis of dimensional analysis suitable parameters to present the thrust developed by a propeller. Assume that the thrust μ depends upon the angular velocity $\omega_{\text {, }}$ speed of advance V, diameter D_{μ} dynamic viscosity μ, mass density μ, elasticity of the fluid medium which can be denoted by the speed of sound in the medium C .

OR

10. a) When can you apply the results of a model to a prototype
b) In 1 in 40 model of a spillway, the velocity and discharge are $2.5 \mathrm{~m} / \mathrm{s}$ and $3.0 \mathrm{~m}^{3} / \mathrm{s}$. Find the corresponding velocity and discharge in the prototype.

II B.Tech. I Semester Regular Examinations November 2018

 Strength of Materials

 Strength of Materials}

(Civil Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What are the fundamental loads? Give the expressions for stresses in these loads.
b) The cross section of the $10-\mathrm{m}$-long flat steel bar AB has a constant thickness of 20 mm , but its width varies from 40 mm to 120 mm . Calculate the elongation of the bar due to the $100-\mathrm{kN}$ axial load. Use $\mathrm{E}=200 \mathrm{GPa}$ for steel.

OR

2. a) When a material is called linear material. Enumerate the advantages of this model is mechanics of materials.
b) What is meant by beam of uniform strength and state its advantages. Derive an expression for the same.

UNIT-II

3. a) Differentiate between deterministic and indeterministic beams with examples
b) A simply supported beam carries two point loads of 6 kN magnitude, each at a distance of 2 m from the supports. A UVL of intensity 0 to $5 \mathrm{kN} / \mathrm{m}$ spreads between the two point loads. Draw the SFD and BMD.

OR

4. a) Define shear force and bending moment at a section of a beam. Establish relationship between SF, BM and rate of loading.
b) A cantilever beam of length 3 m carries a point load of 1 kN at free end along with another point load of 2 kN at distance of 2 m from free end. UDL of $2 \mathrm{kN} / \mathrm{m}$ is spread between the two point loads. Draw the SFD and BMD.

UNIT-III

5. a) Define the terms Neutral axis, neutral plane and moment of resistance.
b) A hollow circular bar used as a beam has outside diameter twice of the inside
diameter. It is subjected to a maximum bending moment of $60 \mathrm{kN}-\mathrm{m}$ and allowable bending stress is 100 Mpa , determine the inside diameter of the bar. Draw the bending stress distribution.

OR

6. The shear force acting on a section of a beam is 120 kN . The section of the
beam is of T-shaped of $200 \times 250 \times 50 \mathrm{~mm}$. the flange and web thicknesses are $50 \mathrm{~mm} . \mathrm{MOI}$ about NA is $1 \mathrm{X} 10^{8} \mathrm{~mm}^{4}$. Find the shear stress at the neutral axis and at the junction of web and flange. Draw the shear stress distribution.
UNIT-IV
7. A cantilever of length 4 m carries a UDL of $1 \mathrm{kN} / \mathrm{m}$ run over the whole length. The cantilever is propped at the free end. If $E=200 \mathrm{GPa}$ and $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$, determine a) the deflection at the center and b) magnitude and position of maximum deflection.

OR

8. A simply supported beam of 12 m carries a point load of 20 kN at a distance of 7 m from one of the ends. Determine the deflection at load point and the slopes at the point load and at the ends using Mohr's, theorem.

UNIT-V

9. a) Define principal stresses. Write the expressions for the same in 2D case
drawing a stress element.
b) State of stress at point is given as $\sigma_{x}=3 M P a, \sigma_{y}=-2 M P a$ and $t=7 M p a$. Draw the Mohr's circle and hence deduce principal stresses and maximum shear stress. Find also the inclinations of principal planes.
OR
10. a) What are theories of failure? Explain the importance of them. 4 M
b) Discuss the Maximum shear stress theory of failure with neat diagram. 10 M
\square
Code: 7G634
II B.Tech. I Semester Regular Examinations November 2018

Surveying

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) List out the principle of surveying
b) Explain briefly about classifications of survey based on object of survey

OR
2. The following were observed in a compass traverse. Correct local attraction

Line	Fore bearing	Back bearing
AB	$68^{0} 15^{\prime}$	$248^{\circ} 15^{\prime}$
BC	$148^{\circ} 45^{\prime}$	$326^{\circ} 15^{\prime}$
CD	$224^{\circ} 30^{\prime}$	$46^{\circ} 00^{\prime}$
DE	$217^{0} 15^{\prime}$	$38^{0} 15^{\prime}$
EA	$327^{\circ} 45^{\prime}$	$147^{\circ} 45^{\prime}$

UNIT-II
3. a) Discuss in detail the methods of direct and indirect contouring
b) Discuss the characteristics of contour lines with neat sketches
4. Following are the correlated latitudes and departures of lines of a closed traverse. Determine the area of traverse by the D.M.D method.

Line	Latitude (m)	Departure (m)		
AB	-116.1	-44.4		
BC	+6.8	+58.2		
CD	+80.5	+17.2		
DA	+28.8	-31.0		
UNIT-III				

5. a) Describe the process of measuring the horizontal angle
b) Briefly explain about the temporary adjustments of a theodolite

OR
6. a) Define horizontal angle and vertical angle in theodolite surveying
b) The observations were made on the top A of flag $A B$ on a hill from two instrument stations P and $Q, 150 \mathrm{~m}$ apart, the station P and Q being in the line with A. The angles of elevations of A at P and Q were $30^{\circ} 05^{\prime}$ and 17052^{\prime} respectively. The staff reading upon the $B M$ ($R L=311.25 \mathrm{~m}$) were, respectively 2.690 and 3.815 when the instrument was at P and Q the telescope being horizontal. Determine the elevation of the foot B of the Flag if $A B$ is 4.5 m

UNIT-IV

7. Describe briefly the methods involved in plane table surveying?

OR
8. Determine the gradient form a point P to another point Q from the following observations made with Tacheometer fitted with an anallactic lens. The constant of instrument was 100 and the staff was held vertical.

Instrument station	Staff station	Bearing	Vertical angle	Staff reading (m)
R	P	120°	$+12^{0} 32^{\prime}$	$1.255,1.810,2.365$
	Q	210°	$+7^{0} 06^{\prime}$	$1.300,2.120,2.940$
UNIT-V				

9. Explain briefly about Two theodolite methods in setting out a curve?

OR
10. a) Describe about total station and state its advantage over other methods of surveying
b) State four uses and applications of GPS 7M

