\square

II B.Tech. I Semester Regular Examinations November 2018

Manufacturing Technology

(Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain centrifugal casting process with a neat sketch.
b) A sprue is 300 mm long and has a diameter of 125 mm at the top. The molten metal level in should be the diameter at the bottom of the sprue? Will the sprue aspirate? Explain.

Abstract

the pouring basing (which is much larger than the top of the sprue) is taken to be 75 mm from the top of the sprue for design purposes. If a flow rate of $650 \mathrm{~mm}^{3} / \mathrm{s}$ is to be achieved, what

OR

2. a) State and explain the properties and types of moulding sands.
b) With the help of a neat sketch explain the cold chamber die casting process.

UNIT-II

3. a) Explain Thermit welding Process with neat sketch.
b) Classify and enumerate the various welding defects with causes of occurrences.

OR

4. a) Explain the various types of oxy-acetylene flames with sketches.
b) Compare and Contrast Brazing and Soldering Process.

UNIT-III

5. a) Differentiate between hot working and cold working process.
b) Classify and write notes on various rolling stand arrangement in detail.

OR

6. a) Explain in detail about wire drawing
b) Estimate the roll force, F, and the torque for an AISI 1020 carbon-steel strip that is 200 mm wide, 10 mm thick, and rolled to a thickness of 7 mm . The roll radius is 200 mm , and it rotates at 200 rpm .

UNIT-IV

7. a) Explain the steps involved in drop forging with neat sketches.
b) Explain impact extrusion process with a neat sketch.

OR

8. a) Explain the process involved in smith forging.
b) Classify the extrusion process and briefly explain the process of direct extrusion.

UNIT-V

9. a) Summarise the various differences between thermoplastics and thermosetting plastics.
b) Explain the injection moulding process.

OR

10. a) Explain the extrusion blow moulding process with a neat sketch. 7M
b) Explain transfer moulding. Discuss its advantages and limitations.
\square

II B.Tech. I Semester Regular Examinations November 2018

Metallurgy and Material Science

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. What is a solid solution? Discuss the similarities and differences between substitutional and interstitial solid solutions

OR
2. List the various types of bonds occurring in a crystal. Discuss the metallic bond and its characteristics.

UNIT-II

3. What is equilibrium diagram? State its importance and objectives. How is equilibrium diagrams classified?

OR

4. Define Eutectic systems. Explain about equilibrium cooling and heating of alloys.

UNIT-III

5. Explain the structure and properties of plain carbon steels and its applications

OR

6. Explain micro structure, properties and uses of the below.
(a) White cast iron
(b) spheroidal cast iron

UNIT-IV

7. Explain the role of solvus curve in phase diagrams for age hardenable alloys.

OR

8. Explain briefly
a) Full annealing.
b) Isothermal annealing
c) Sub critical annealing.

UNIT-V
9. Enumerate the characteristics, properties and applications of cermets, glass

OR

10. Write Short notes on
a) Metal ceramic mixtures.
b) Carbon composites
\square

II B.Tech. I Semester Regular Examinations November 2018
 Mechanics of Solids
 (Mechanical Engineering)

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A specimen of steel 25 mm diameter with a gauge length of 200 mm is tested to destruction. It has an extension of 0.16 mm under a load of 80 kN and the load at elastic limit is 160 kN . The maximum load is 180 kN . The total extension at fracture is 56 mm and the diameter at the neck is 18 mm . Find (i) the stresses at elastic limit, (ii) Young's Modulus, (iii)Percentage elongation, (iv)Percentage reduction in area and, (v)Ultimate tensile stress
b) A stepped circular bar having diameters $20 \mathrm{~mm}, 15 \mathrm{~mm}$ and 10 mm over axial lengths of $100 \mathrm{~mm}, 80 \mathrm{~mm}$ and 60 mm is subjected to an axial tensile force of 5 kN . If $E=100 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.32$ for the material of the bar, determine (i) Total change in length and (ii) Change in each diameter

OR

2. a) A spherical ball of a material 10 mm in diameter goes down to a depth of 500 meters in sea water. If the weight density of sea water $=1040 \mathrm{~kg} / \mathrm{m}^{3}$ and the bulk modulus of the material is $16 \times 10^{5} \mathrm{~kg} / \mathrm{cm}^{2}$, determine the change in the volume of the ball?
b) Define Hooke's law, Poisson's ratio and state their significance briefly?

UNIT-II

3. a) Define beam? Discuss briefly about the types of beams with neat sketches?
b) Draw the SF and BM diagrams for the cantilever beam shown in fig.a.

Fig a

OR

4. a) Draw the SF and BM diagrams for the beam shown in fig.b and mark the salient points. Find the point of contraflexure and maximum bending moment?

Fig b
b) A beam 6 m long, simply supported at ends carries a linearly varying load with maximum rate at the centre of the beam i.e. 1.5 tonne/m run. Assume the uniformly varying load is zero at the supports and maximum at the centre? Draw the SF \& BM diagrams for the beam?

UNIT-III

5. a) Derive an expression of simple bending equation and state the assumptions of it?
b) A cantilever of sq. section $20 \mathrm{~mm} \times 20 \mathrm{~mm} \times 2 \mathrm{~m}$ long, just fails in flexure when a load of 12 KN is placed at its free end. A beam of the same material and having a rectangular cross section 150 mm wide and 300 mm deep is simply supported over a span of 3 m . Calculate the minimum central concentrated load required to break the beam?

OR

6. a) Derive an expression for the shear stress across the circular cross section?
b) A simply supported beam has a span of 4 m and a rectangular cross section of $100 \mathrm{~mm} \times 200 \mathrm{~mm}$. Find the UDL it can carry, if the maximum bending stress and the maximum shear stress are not to exceed $10 \mathrm{~N} / \mathrm{mm}^{2}$ and $0.6 \mathrm{~N} / \mathrm{mm}^{2}$ respectively.

UNIT-IV

7. a) Derive an expression for the deflection of a cantilever beam subjected to UDL?
b) A simply supported beam of 6 m span is subjected to a concentrated load of 18 kN at 4 m from left support. Calculate (i) The position and the value of the maximum deflection, (ii) Slope at mid span, (iii) Deflection at the load point? Take, $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=15 \times 10^{6} \mathrm{~mm}^{4}$

OR

8. a) A steel beam of circular section with diameter of 50 mm is used as a cantilever of length 3 m . How much load can be safely applied at the free end of the cantilever, if $\mathrm{E}=200 \mathrm{GPa}$, and deflection is not exceed 1 mm and the slope is not to exceeded 0.2°
b) While using Macaulay's method, explain how the location of a moment is specified in bending moment equation?

UNIT-V

9. a) Derive an expression for the circumferential, longitudinal stresses and change in dimensions of the thin cylinder?
b) The diameter of the city water supply pipe is 750 mm . It has to withstand a water head of 60 m . Find the thickness of the seamless pipe, if the permissible stress is $20 \mathrm{~N} / \mathrm{mm}^{2}$. Take the unit weight of the water as $9810 \mathrm{~N} / \mathrm{m}^{3}$.

OR

10. a) State the assumptions made in Euler's theory for axially loaded elastic long columns?
b) A thick spherical shell of 400 mm external diameter and 50 mm thick is subjected to internal fluid pressure of $50 \mathrm{~N} / \mathrm{mm}^{2}$. Draw the variation of hoop stresses across the thickness. Draw the variation of hoop stress?

Code: 7GC32

II B.Tech. I Semester Regular Examinations November 2018 Engineering Mathematics - III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find a real root of the equation $x^{3}-3 x-5=0$ by the method of false position correct to three decimal places.
b) Find the real root of the equation $x=e^{-x}$ using Newton-Raphson method.

OR

2. a) Employ Taylor's method to obtain the approximate values of y at $x=0.1,0.2$ for the differential equation $\frac{d y}{d x}=x-y^{2}, y(0)=1$.
b) Apply Runge-Kutta method of order 4, compute $y(0.2)$ and $y(0.4)$ from the equation $\frac{d y}{d x}=x+y, y(0)=1$.

UNIT-II

3. a) The population of a town in the decennial census was given below

Year : x	1891	1901	1911	1921	1931
Population: y (in thousands)	46	66	81	93	101

Estimate the population for the year 1895.
b) Use Lagrange's interpolation formula to find the value of y when $x=3.5$ from the following table

x	0	1	3	4
y	-12	0	12	24

OR
4. a) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	4.0
y	3.375	7.0	13.625	38.875	59

b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using
(i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule, (iii) Simpson's $\frac{3}{8}$ rule with $h=0.5$ and 0.25

UNIT-III

5. a) Find the values of a, b and c so that $y=a+b x+c x^{2}$ is the best fit to the data

x	0	1	2	3	4
y	1	0	3	10	21

b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
6. a) Determine the values of a and b by the method of least squares such that $y=a e^{b x}$ fits the following data

x	0	1	2	3
y	1.05	2.10	3.85	8.30

b) Solve $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}=0$ by employing the method of separation of variables.

UNIT-IV

7. Prove that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}},-\pi<x<\pi$ by using Fourier series and hence show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

OR

8. Obtain a half range cosine series for $f(x)=\left\{\begin{array}{c}k x, 0 \leq x \leq l / 2 \\ k(l-x), l / 2 \leq x \leq l\end{array}\right.$ and deduce the sum of the series is $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

UNIT-V

9. a) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}a^{2}-x^{2}, & \text { for }|x| \leq a \\ 0, & \text { for }|x|>a\end{array}\right.$
b) Find the Fourier cosine transform of $e^{-a x}(a>0)$. Hence Evaluate $\int_{0}^{\infty} \frac{\cos \lambda x}{x^{2}+a^{2}} d x$

OR

10. Obtain the Fourier sine transfromation of

$$
f(x)=\left\{\begin{array}{cc}
4 x, & \text { for } 0<x<1 \\
4-x, & \text { for } 1<x<4 \\
0, & \text { for } x>4
\end{array}\right.
$$

Hall Ticket Number :										

II B.Tech. I Semester Regular Examinations November 2018 Basic Thermodynamics

(Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain what do you understand by concept of continuum? How will you define density and pressure using this concept?
b) A balloon is filled with air (200 kPa and 300 K) such that it becomes as sphere of diameter 1 m . It is then gradually heated till the pressure rises to 500 kPa . Determine the amount of work done during the process, assuming that the pressure inside the balloon is proportional to the diameter of the balloon.

OR

2. a) A spherical balloon holds 5 kg of air at 200 kPa and 450 K . If the air pressure inside is always proportional to the square of the balloon diameter, determine the work done when the balloon volume doubles due to heating.
b) A fluid contained in a horizontal cylinder fitted with a frictionless leak proof piston, is continuously agitated by means of a stirrer passing through the cylinder cover. The cylinder diameter is 0.4 m . During the stirring process lasting 10 minutes, the piston slowly moves out a distance of 0.485 m against the atmosphere. The net work done by the fluid during the process is 2 kJ . The speed of the electric motor driving the stirrer is 840 rpm . Determine the torque in the shaft and power output of the motor.

UNIT-II

3. a) Is the Third law of thermodynamics, an extension of second law? Is it an independent law of nature? Explain?
b) A fluid contained in a cylinder receives 150 kJ of mechanical energy by means of a paddle wheel, together with 50 kJ in the form of heat. At the same time, the piston in the cylinder moves in such a way that the pressure remains constant at $200 \mathrm{kN} / \mathrm{m}^{2}$ during the fluid expansion from $2 \mathrm{~m}^{3}$ to $5 \mathrm{~m}^{3}$. What is the change in internal energy and in enthalpy?
UNIT-III
4. a) Discuss the significance of Gibbs and Helmholtz functions.
b) Two blocks of metal, each having a mass of 10 kg and having a specific heat of $0.4 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$, are at a temperature of $40^{\circ} \mathrm{C}$. A reversible refrigerator receives heat from one block and rejects heat to the other. Calculate the work required to cause a temperature difference of $100^{\circ} \mathrm{C}$ between the two blocks.

OR

6. a) Derive Maxwell Equations.
b) A copper ball weighing 0.4536 kg and uniformly heated to 310.7 K is dropped in a cold bath where upon it cools down to 267 K . Calculate the entropy change of the ball.

UNIT-IV

7. a) Why cannot a throttling calorimeter measure the quality if the steam is very wet? How is the quality measured then?
b) A steam boiler initially contains $5 \mathrm{~m}^{3}$ of steam and $5 \mathrm{~m}^{3}$ of water at 1 MPa . Steam is taken out at constant pressure until $4 \mathrm{~m}^{3}$ of water is left. What is the heat transferred during the process?

OR

8. a) One mole of air is compressed isochorically till its pressure gets doubled. Then it is allowed to expand reversibly and isothermally to regain its original pressure. Thereafter, it is subjected to isobaric cooling whereupon its volume decreases to restore its initial state. Find the net work done. Assume air behaves as an ideal gas.
b) Define Compressibility factor ' Z '. Discuss the significance of the compressibility factor.

UNIT-V

9. a) A steam pressure of holding capacity $4 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at $250^{\circ} \mathrm{C}$. The mass of the liquid present is 1 ton. Determine (i) Quality; (ii) Specific Volume; (iii) Specific Enthalpy; (iv) Specific Entropy and (v) Specific Internal Energy of steam.
b) Two bodies of equal heat capacities C and temperatures T 1 and T 2 from an adiabatically closed system. What will be the final temperature be if one lets this system come to equilibrium (i) freely; (ii) reversibly.

OR

10. a) A gas mixture consists of $0.4 \mathrm{~kg} \mathrm{CO}, 1.1 \mathrm{~kg}$ of CO_{2} and 1.5 kg of N_{2}. Determine
i) mass fraction of each component
ii) mole fraction of each component
iii) average molar mass of the mixture
iv) gas constant of the mixture.
b) The volumetric analysis of a dry flue gas in a boiler trail is given in percentage as $13 \% \mathrm{CO}_{2}, 1.5 \% \mathrm{CO}, 3.5 \% \mathrm{O}_{2}$ and $82 \% \mathrm{~N}_{2}$. Determine the percentage gravimetric analysis. Also find the specific gas constant of the mixture.
[^0]| Hall Ticket Number : | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Code: 7G535

R-17

II B.Tech. I Semester Regular Examinations November 2018

Machine Drawing

(Mechanical Engineering)
Max. Marks: 70
Time: 4 Hours

Part-I

Answer any Two questions from the following ($2 \times 10=20 M a r k s$)

1. a) Sketch the following thread profiles for a nominal diameter of 20 mm and pitch 2 mm
i) Whitworth thread ii) Square thread
b) Sketch the following forms of nuts, with proportions marked:
i) flanged nut, ii) cap nut.

OR

2. Draw gib and cotter joint suitable for joining 40 mm square rods?
3. Draw two views of a Single strap butt joint of two rows zig - zag to connect two plates of 9 mm thick?

OR

4. Draw the two views of oldham's coupling for shaft of 50 mm diameter.

Part-II
Answer any One question from the following ($1 \times 25=25$ Marks)
5. Assemble all parts of the screw jack, shown in below figure and draw the following views:
(i) Half sectional view from the front, and
(i) View from above.

6. Assemble all parts of the stuffing box for a vertical steam engine, shown in below figure and draw,
(i) half sectional view from the front, with left half in section,
(ii) half sectional view from the right and
(iii) view from above.

Part-III

Answer any One question from the following ($1 \times 25=25 M a r k s$)

7. Prepare the part drawings of the Plummer block, shown in below figure

Parts List:

S.No.	Name	Material	Quantity
1	Base	Cl	1
2	Bearing Brass	Bronze	1
3	Bearing Brass	Bronze	1
4	Cap	Cl	1
5	Bolt with Nuts	MS	2
OR			

8. Prepare the part drawings of the Blow-off cock, shown in below figure

Blow-off cock

[^0]:

