Code: 7GC32

|| B.Tech. I Semester Regular \& Supplementary Examinations November 2019

Engineering Mathematics - III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find a root of the equation $x^{3}-2 x-5=0$ by using Bisection method.
b) Find a root of the equation $x \log _{10} x=1.2$ by using Regula Falsi method.

OR

2. a) Solve $y^{\prime}=x+y$ given $y(1)=0$. Find $y(1.1)$ and $y(1.2)$ by Taylor's method.
b) Using Runge-Kutta method of order 4, find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.

UNIT-II

3. a) Find the cubic polynomial which takes the following values. Hence find $f(4)$.

x	0	1	2	3
y	1	2	1	10

b) Use Lagrange's Interpolation formula to the following data to find the values of y when $x=10$.

x	5	6	9	11
y	12	13	14	16

4. a) Apply Trapezoidal rule to evaluate $\int_{0}^{6} x \sec x d x$.
b) Use Simpsons $1 / 3^{\text {rd }}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$.

UNIT-III

5. a) Fit a straight line of the form $y=a x+b$ to the following data,

x	1	2	3	4	5	6	7	8
y	5.4	6.3	8.2	10.3	12.6	14.9	17.3	19.5

b) Solve the Partial differential equation $p^{2}+q^{2}=x+y$ by Charpit's method.

OR

6. a) Fit the second degree parabola to the following data.

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) Using method of separation of variables, Solve $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(x, 0)=4 e^{-x}$.

UNIT-IV

7. a) Expand the function $f(x)=x \sin x$ as Fourier series in the interval $-\pi \leq x \leq \pi$. Deduce that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\frac{1}{7.9}+\ldots=\frac{1}{4}(\pi-2)$.
b) Expand $f(x)=\frac{x}{2}$ as a Fourier series in the interval $-\pi<x<\pi$.

OR

8. a) Express $f(x)=x$ as a half range cosine series in $0<x<2$.
b) If $f(x)=\left\{\begin{array}{cc}x, & 0<x<\pi / 2 \\ \pi-x, & \pi / 2<x<\pi\end{array}\right.$ then show that
$f(x)=\frac{4}{\pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x+\cdots\right]$.

UNIT-V

9. a) Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\omega \sin x \omega}{1+\omega^{2}} d \omega=\frac{\pi}{2} e^{-x},(x>0)$.
b) Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$.

OR

10. a) Find the Fourier sine transform of $x e^{x}$.
b) Find the finite Fourier sine and cosine transform of $f(x)=2 x, 0<x<4$.
\square

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019
 Metallurgy and Material Science

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Relate the phenomena of plastic deformation with crystal imperfections

7M
b) Explain planimetric method of determination of grain size and relate mechanical properties with grain size

OR
2. a) Summarize Hume-Rothery rules with examples
b) Explain various types of intermediate alloy phases with examples 7M

UNIT-II

3. a) Describe the construction of isomorphous alloy system and equilibrium cooling of a typical alloy in this system
b) Lead and tin form a eutectic at $183^{\circ} \mathrm{C}$ with composition (38.1Pb-61.9Sn). The melting temperatures of lead and tin are $328^{\circ} \mathrm{C}$ and $232^{\circ} \mathrm{C}$ respectively. The maximum solubility of tin in lead is 19% and that of lead in tin is 2.5% both occurring at eutectic temperature. The room temperature solubility of tin in lead is 2% and that of lead in tin is 0%. Construct the lead and tin phase diagram on a graph sheet labeling lines and areas. Calculate the composition and relative amounts of eutectic and proeutectic constituents of an alloy containing 30\% tin after eutectic temperature

OR
4. a) Describe eutectic, peritectic, eutectoid and peritectoid reactions

UNIT-III

5. a) Describe the composition, structure, properties and applications of malleable cast iron and grey cast iron

7M
b) Explain the composition, microstructure, properties and applications of Hadfield
manganese steel and duralumin

OR
6. a) Classify brasses and explain the stress corrosion cracking and dezincification of brasses

7M
b) What are the allotropic forms of titanium and describe the effect of alloying
elements on these allotropic forms

UNIT-IV
7. a) Discuss the details of full annealing and spherodizing of carbon steels 7M
b) Explain age hardening process with an example 7M

OR
8. a) Describe the details of flame hardening and induction hardening 7M
b) Distinguish between mechanical and diffusion coatings 7M

UNIT-V
9. a) Describe the types, properties and applications of glasses 7M
b) Discuss various reinforcements used in composite materials 7M

OR
10. a) Elaborate steel making using Bessemer converter 7M
b) Explain the steps involved in powder metallurgy

Hall Ticket Number :

Code: 7G535

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019 Machine Drawing
(Mechanical Engineering)
Max. Marks: 70
Time: 4 Hours

PART-I

Answer any Two questions from the following ($2 \times 10=20 M a r k s$)

1. Draw the conventional representation of the following:
a) Bronze
b) Cast Iron
c) Steel
OR
2. Represent two views of hexagonal nut and square nut with proportions and take the diameter of the bolt as 30 mm .
3. Draw i) sectional view from the front and ii) view from the above of the double riveted, double strap, chain but joint, to join plates of thickness 10 mm .

OR

4. Draw i) sectional view from the front and ii) view from the side of a universal coupling, indicating proportions, to connect two shafts, each of diameter 40 mm .

Part-II

Answer any One question from the following (1×25 = 25Marks)

5. Details of Petrol Engine connecting rod are shown in figure. Assemble all parts and draw:
i) Front view
ii) Sectional plan
iii) Right side view

OR

6. Assemble all the parts of screw jack shown in figure. Draw the following views
i) Half sectional front view
ii) Top view

Part-III

Answer any One question from the following ($1 \times 25=25$ Marks)
7. Prepare the part drawing of the blow of cock

8. Prepare the part drawing of the tool post

Parts list

Part No.	Name	Matl.	Qty.
1	Body	MS	1
2	Clamp screw	MCS	1
3	Wedge	Cl	1
4	Ring	MS	1
5	Square block	MS	1

Code: 7G534

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019

Manufacturing Technology

(Mechanical Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is pattern allowance? List and explain each one with neat sketches.
b) How die casting is different from others? Explain die casting with neat sketch?

OR

2. a) Write the pattern materials and moulding materials? Explain.
b) Explain the major casting design considerations in casting processes? 8M

UNIT-II

3. a) Explain the Thermit welding process and write its specific applications?
b) Explain the kinds of polarities in welding?

OR

4. a) Explain the Plasma welding process and write its specific applications? 10 M
b) What is flux? Why it is essential in some welding techniques? 4 M

UNIT-III

5. a) List the various types of rolling mills and explain each one with neat sketch?
b) What are the specific merits of cold working over hot working? 4M

OR

6. a) Explain the progressive die with neat sketch and write its applications?
b) Explain the wire drawing and Tube drawing processes with neat sketches 7 M

UNIT-IV

7. a) What are types of extrusion processes? Explain each one with neat sketches
b) How is upsetting different from fullering in forging? Explain 4M

OR
8. a) What are the common defects in forging? Write causes and remedies for them. 10 M
b) Explain the hydrostatic extrusion process and write the applications. 4M

UNIT-IV

9. a) Write about compression moulding process and transfer moulding process?
b) Write the applications of injection moulding process?

OR

10. a) Explain the blow moulding process with neat sketch? 8 M
b) What are the two methods of polymerization methods in plastics? Explain 6M

Code: 7G531

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019

Mechanics of Solids

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A brass bar having cross sectional area of $1200 \mathrm{~mm}^{2}$ is subjected to axial force as shown in figure. Find the total elongation of the bar. The modulus elasticity of brass is $110 \mathrm{GN} / \mathrm{m}^{2}$

b) A bar of 20 mm diameter is tested in tension. It is observed that when a load of 37.7 kN is applied, the extension measured over gauge length of 200 mm is 0.12 mm and contraction in diameter is 0.0036 mm . Find the four elastic constants.

OR

2. a) A bar of 30 mm diameter is subjected to a pull of 60 kN . The measured extension on gauge length of 200 mm is 0.1 mm and in diameter is 0.004 mm . Calculate
i) Young's Modulus
ii) Poison's Ratio
iii) Bulk Modulus
b) Explain the stress-strain diagram for ductile and brittle materials with help of legible sketches?

UNIT-II

3. A Cantilever beam of length 4 m carries a gradually varying load of zero at free end and $2 \mathrm{kN} / \mathrm{m}$ at a distance of 2 m from the free end and a point load of 80 kN at a distance of 3 m from free end. Draw the shear force and Bending Moment diagram for the beam.

OR

4. A simply supported beam $A B$ of 6 m span is carrying a uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from left end and a point load of 75 kN at a distance of 1.5 m from right end. Draw the shear force and Bending Moment diagram for the beam and also calculate maximum bending moment.

UNIT-III

5. a) The cross section of a T-beam is as follows: Flange thickness=10mm; width of the flange $=100 \mathrm{~mm}$; thickness of web=10mm; depth of the web=120mm. if a shear force of 2 kN is acting a particular section of the beam. Evaluate and draw the shear stress distribution across the cross-section.
b) A simply supported beam carries a concentrated load at the centre of the span. If the maximum stress due to bending is 150 Mpa , Find the ratio of the depth of beam section to span in order that the central deflection may not exceed $1 / 500$ of the span.
6. a) A channel section made with 120 mmx 10 mm horizontal flange and $16 \mathrm{~mm} \times 10 \mathrm{~mm}$ vertical web is subjected to a vertical shearing force of 120 kN . Draw the shear stress distribution diagram across the section.
b) Show from the first principles that is a beam of rectangular section is subjected to a transverse shearing force, the maximum shear stress at a cross-section is 1.5 times the mean shear stress.

UNIT-IV

7. A steel girder of uniform cross-section section, 14 m long is simply supported at the ends. It carries concentrated loads 90 kN and 60 kN at two points 3 m and 4.5 m from two ends respectively. Calculate: the deflection of the girder at the points under the two loads and the maximum deflection. Take: $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=64 \times 10^{-4} \mathrm{~m}^{4}$.

OR

8. Determine the slope at the supports and maximum deflection for the beam given in the figure below using Macaulay's method. Take: $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=80 \times 10^{-4} \mathrm{~m}^{4}$

9. a) Derive the equations for the circumferential and longitudinal stresses induced in the thin spherical shells.
b) A shell 3.25 m long and 1 m diameter is subjected to an internal pressure of $1.2 \mathrm{n} / \mathrm{mm}^{2}$. If the thickness of the shell is 10 mm , find the circumferential and longitudinal stresses. Find also the maximum shear stress and changes in the dimensions of the shell. Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and the poison's ratio is 0.3 .

OR

10. a) A cylindrical vessel is 1.5 m diameter and 4 m long is closed at ends by rigid plates. It is subjected to an internal pressure of 3 Mpa . If the maximum principal stress is not to exceed 150 Mpa , find the thickness of the shell. Also find the changes in the diameter, length and volume of the shell. Take: E=200Gpa and the poison's ratio is 0.25 .
b) A shell of 4 m long 1 m in diameter is subjected to an internal pressure of $1 \mathrm{~N} / \mathrm{mm}^{2}$. If the thickness of the shell is 10 mm ; find the circumferential and longitudinal stresses. Find also the changes in the dimensions of the shell. Take: $\mathrm{E}=200 \mathrm{Gpa}$ and the poison's ratio is 0.3.

Code: 7G533
R-17

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019

Basic Thermodynamics

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

> UNIT-I

1. a) Discuss the macroscopic and microscopic point of view of thermodynamics with examples
b) A non-flow reversible process will occur for which pressure and volume are correlated by $p=v^{2}+(6 / v)$ where p is in bars and v is in m^{3}. What amount of work will be done when the volume changes from $2 \mathrm{~m}^{3}$ to $4 \mathrm{~m}^{3}$.

OR

2. a) Prove that the energy is the property of the system
b) $0.2 \mathrm{~m}^{3}$ of ideal gas at a pressure of 2 Mpa and 600 K are expanded isothermally to 5 times the initial volume. It is then cooled to 300 K at constant volume and then compressed polytropically to its initial state. Determine the net work done and heat transfer during the cycle.

UNIT-II

3. a) State the Kelvin plank and Clausius statements of second law of thermodynamics and prove their equivalence.
b) A heat engine receives heat at the rate of $1500 \mathrm{~kJ} / \mathrm{min}$ and gives 8.2 kW work. Calculate the Thermal efficiency and heat rejected.

OR

4. a) Using Maxwell's relations deduce the two Tds equations
b) An iron cube at $400^{\circ} \mathrm{C}$ is dropped into an insulated bath having 10 kg water at $25^{\circ} \mathrm{C}$. Final temperature of water is $50^{\circ} \mathrm{C}$. Assume the process as reversible and find the change in entropy of iron and water. Take $\mathrm{C}_{\mathrm{pw}}=4.186 \mathrm{~kJ} / \mathrm{kgK}$.

UNIT-III

5. a) What is superheating.
b) Draw the layout of Mollier diagram and explain the important properties on it. 10M

OR

6. a) Explain the working of throttling calorimeter with neat sketch.
b) Steam initially at $1.5 \mathrm{MPa}, 300^{\circ} \mathrm{C}$ expands reversibly and adiabatically in a steam turbine to $40^{\circ} \mathrm{C}$. Evaluate the ideal work output of the turbine per kg of steam.
UNIT-IV
7. a) Show that for an ideal gas $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$ 7M
b) With help of suitable example explain the differences between heat transfer and work transfer 7M
OR
8. a) Explain free expansion process with suitable sketch 7Mb) Air at $250^{\circ} \mathrm{C}$ and 300 kPa is compressed reversibly and isothermally to $1 / 16 \mathrm{th}$of its original volume. Find the final pressure, the work done and change ininternal energy per kg of air7M
UNIT-V9. a) Define mole, mole fraction, Avogadro's law and equation of state7Mb) A gas mixture contains 1 kg of O_{2} and 3.5 kg s of N_{2}. The pressure andtemperature of mixture are 1 bar and $27^{\circ} \mathrm{C}$. Determine mass and molefractions of constituents, average molar weight of mixture.7M
OR
9. a) Differentiate total pressure and the partial pressure, mass fraction and mole fraction 7M
b) 4 kg of carbon dioxide at $40^{\circ} \mathrm{C}$ and 1.4 bar are mixed with 8 kg of nitrogen at$160^{\circ} \mathrm{C}$ and 1.0 bar to form a mixture at a final pressure of 0.7 bar. Theprocess occurs adiabatically in a steady flow apparatus. Calculate: The finaltemperature of the mixture; (ii) The change in entropy. Take value of Cp : for$\mathrm{CO}_{2}=0.85 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\mathrm{N}_{2}=1.04 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.7M
