Hall Ticket Number :											
Code: 7GC32							<u></u>				R-17
II B.Tech. I Semeste	er Re	gula	ar &	Supple	emer	ntary	' Exc	amin	atio	ns Nov	ember 2019
	E	ngi	nee	ering A	Nath	emo	atics	s – I	1		

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

- 1. a) Find a root of the equation $x^3 2x 5 = 0$ by using Bisection method.
 - b) Find a root of the equation $x \log_{10} x = 1.2$ by using Regula Falsi method.

- 2. a) Solve y' = x + y given y(1) = 0. Find y(1.1) and y(1.2) by Taylor's method.
 - b) Using Runge-Kutta method of order 4, find y(0.2) for the equation $\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1.$

UNIT–II

3. a) Find the cubic polynomial which takes the following values. Hence find f(4).

X	0	1	2	3
У	1	2	1	10

b) Use Lagrange's Interpolation formula to the following data to find the values of y when x = 10.

Х	5	6	9	11
У	12	13	14	16
		OP		

- 4. a) Apply Trapezoidal rule to evaluate $\int_{0}^{0} x \sec x \, dx$.
 - b) Use Simpsons $\frac{1}{3}^{rd}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$.

5. a) Fit a straight line of the form y = ax + b to the following data,

х	1	2	3	4	5	6	7	8
у	5.4	6.3	8.2	10.3	12.6	14.9	17.3	19.5

b) Solve the Partial differential equation $p^2 + q^2 = x + y$ by Charpit's method.

OR

6. a) Fit the second degree parabola to the following data.

Х	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

b) Using method of separation of variables, Solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(x,0) = 4e^{-x}$.

UNIT–IV

- 7. a) Expand the function $f(x) = x \sin x$ as Fourier series in the interval $-f \le x \le f$. Deduce that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{1}{4}(f-2)$.
 - b) Expand $f(x) = \frac{x}{2}$ as a Fourier series in the interval -f < x < f.

OR

8. a) Express f(x) = x as a half range cosine series in 0 < x < 2.

b) If
$$f(x) = \begin{cases} x, & 0 < x < f/2 \\ f - x, & f/2 < x < f \end{cases}$$
 then show that
$$f(x) = \frac{4}{f} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x + \cdots \right].$$
UNIT-V

9. a) Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\check{S} \sin x \check{S}}{1 + \check{S}^{2}} d\check{S} = \frac{f}{2}e^{-x}, \ (x > 0).$

b) Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$.

OR

- 10. a) Find the Fourier sine transform of xe^x .
 - b) Find the finite Fourier sine and cosine transform of f(x) = 2x, 0 < x < 4.

Hall	Tick	et Number :	_
Code:	764	532 R-17	
		I Semester Regular & Supplementary Examinations November 201	9
		Metallurgy and Material Science	
		(Mechanical Engineering)	
		rks: 70 er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	S
AI	12 44 6		
	,	UNIT-I	
1.	a)	Relate the phenomena of plastic deformation with crystal imperfections	7M
	b)	Explain planimetric method of determination of grain size and relate mechanical properties with grain size	7M
		OR	
2.	a)	Summarize Hume-Rothery rules with examples	7M
	b)	Explain various types of intermediate alloy phases with examples	7M
3.	2)	UNIT-II Describe the construction of isomerphaus allow system and equilibrium cooling	
5.	a)	Describe the construction of isomorphous alloy system and equilibrium cooling of a typical alloy in this system	7M
	b)	Lead and tin form a eutectic at 183°C with composition (38.1Pb-61.9Sn). The	
		melting temperatures of lead and tin are 328°C and 232°C respectively. The	
		maximum solubility of tin in lead is 19% and that of lead in tin is 2.5% both occurring at eutectic temperature. The room temperature solubility of tin in lead	
		is 2% and that of lead in tin is 0%. Construct the lead and tin phase diagram on	
		a graph sheet labeling lines and areas. Calculate the composition and relative	
		amounts of eutectic and proeutectic constituents of an alloy containing 30% tin	
		after eutectic temperature OR	7M
4.	a)	Describe eutectic, peritectic, eutectoid and peritectoid reactions	7M
	⊆, b)	Construct Fe-Fe ₃ C equilibrium diagram, mark compositions and temperatures,	
	,	label areas and indicate important reactions occurring on it	7M
		UNIT–III	
5.	a)	Describe the composition, structure, properties and applications of malleable cast iron and grey cast iron	7M
	b)	Explain the composition, microstructure, properties and applications of Hadfield	7 101
	5)	manganese steel and duralumin	7M
		OR	
6.	a)	Classify brasses and explain the stress corrosion cracking and dezincification	-14
	L)	of brasses	7M
	b)	What are the allotropic forms of titanium and describe the effect of alloying elements on these allotropic forms	7M
		UNIT-IV	
7.	a)	Discuss the details of full annealing and spherodizing of carbon steels	7M
	b)	Explain age hardening process with an example	7M
		OR	
8.	a)	Describe the details of flame hardening and induction hardening	7M
	b)	Distinguish between mechanical and diffusion coatings UNIT-V	7M
9.	a)	Describe the types, properties and applications of glasses	7M
0.	b)	Discuss various reinforcements used in composite materials	7M
		OR	
10.	a)	Elaborate steel making using Bessemer converter	7M
	b)	Explain the steps involved in powder metallurgy	7M

	Hall Ticket Number :								[]	
	Code: 7G535		. <u>.</u>						R-17	
	II B.Tech. I Semeste	er Regule	-	-		-	amir	nations No	ovember 2019	
		(Mecha		Drawi Engine	-	.)			
	Max. Marks: 70	(moena	near	Lighter	onng			Time: 4 Hours	
				PAI	RT-I					
	Answer an	y Two qu	estions	from	the follo	wing	(2)	x 10 = 20Ma	arks)	
1.	Draw the conventiona	l represe	ntation of	the fo	ollowing:					10M
	a) Bronze	b) Cast I	ron	c)	Steel		d)	Concrete		
				C	R					
2.	Represent two views diameter of the bolt as		igonal nu	it and	d square	e nut	with	n proportior	ns and take the	10M
3.	Draw i) sectional vie double strap, chain bu				,			bove of the	e double riveted,	10M
				C	R					
4.	Draw i) sectional vie	w from th	ne front a	and ii) view fr	om th	ne si	de of a un	iversal coupling,	

indicating proportions, to connect two shafts, each of diameter 40 mm. 10M

Part-II

Answer any One question from the following (1 x 25 = 25Marks)

- 5. Details of Petrol Engine connecting rod are shown in figure. Assemble all parts and draw:
 - i) Front view
 - ii) Sectional plan
 - iii) Right side view

- 6. Assemble all the parts of screw jack shown in figure. Draw the following views
 - i) Half sectional front view
 - ii) Top view

Part-III Answer *any One* question from the following (1 x 25 = 25Marks)

- □ 114 ∳78 \$68 \$56 φ64 5 3 5 우 2 2 43 8 ส 8 8 9 œ Ŧ 98 φ48 8 φ80 2 \$ 9 32 ช 2 φ94 4 \$ 8 68 8 6 22 2 8 Ŧ φ54 φ64 ส φ44 _{φ60} φ132 80 4 HOLES, DIA12 10 035 ¢112 ¢72 40 **R17** 80 0114 Parts list Matl. Qty. Part No. Name CS 1 Body 1 GM 1 2 Cock 3 Gland CS 1
- 7. Prepare the part drawing of the blow of cock

Hall ⁻	Ticke	et Number :													
Code:	7G5	534							1					R-17	
ll B.Te	ch.	I Semester	-	-					•			atio	ns N	ovember 20)19
							-	-	chn inee						
		′ks: 70		-				_		_	-			Time: 3 Ho	Urs
Ar	nswe	er all five units	s by a	choc	osing		que *****		fron	n ead	ch ui	nit (ł	5 x 14	1 = 70 Marks)	
								UNI	F —I						
1.	a)	What is patte	ern a	llowa	ance	? Lis	t and	exp	lain e	each	one	with	neat	sketches.	6M
	b)	How die cas	ting i	s dif	feren	t fror	n oth			lain c	die ca	asting	g with	n neat sketch?	8M
0	-)				' - I -	I		OF		' - I	- 0 F		_		
2.	a)	Write the par												0	6M
	b)	Explain the r	najo	r cas	ting o	desig	·			ons ir	i cas	ting	proce	esses?	8M
3.	a)	Explain the	Therr	mit w	eldin	a pro		UNIT s and		e its	spec	ific a	oilaa	ations?	10M
	b)	Explain the k				• •					-1				4M
	- /	I		-			_	OF							
4.	a)	Explain the F	Plasr	na w	eldin	g pro	ocess	s and	writ	e its :	spec	ific a	pplic	ations?	10M
	b)	What is flux?	? Wh	y it is	s ess	entia	l in s	ome	weld	ling t	echr	nique	s?		4M
							l	UNIT	-111						
5.	a)	List the vario	ous ty	/pes	of ro	lling	mills	and	expl	ain e	ach (one v	with r	neat sketch?	10M
	b)	What are the	e spe	cific	meri	ts of	cold		•	over l	not w	orkir	ng?		4M
C		Evoloin the r		aaai	رم مان			OF		and a	wita	ite e	nnlin	ational	714
6.	a) b)	Explain the p	Ū												7M 7M
	b)	Explain the v	Mie	Jiaw	ing a	nu i		UNIT	• •		5565	with	neai	SKEICHES	7 171
7.	a)	What are typ	bes o	f ext	rusio	n pro				ain e	ach (one v	with r	neat sketches	10M
	b)	How is upse	tting	diffe	rent	from	fulle	ring i	n for	ging?	? Exp	olain			4M
								OF	R						
8.	a)	What are the	com	mon	defe	cts in	forg	ing?	Write	caus	ses a	ind re	emed	ies for them.	10M
	b)	Explain the h	nydro	ostati	c ext	rusic	on pro	oces	s and	l writ	e the	e app	olicati	ons.	4M
_								UNIT						-	
9.	a)	Write about					-					er m	ouldi	ng process?	10M
	b)	Write the ap	plica	tions	of in	jecti	on m		• •	roces	ss?				4M
10.	a)	Explain the t	าโอเพ	mou	Idina	proc	:ess	OF with		sketi	ch?				8M
10.	b)	What are the			-							in nla	astics	? Explain	6M
	~)					5, b	***				540	Pic			0.01

Hall Ticket Number :						
						R-17

Code: 7G531

II B.Tech. I Semester Regular & Supplementary Examinations November 2019

Mechanics of Solids

(Mechanical Engineering)

Max. Marks: 70

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

 A brass bar having cross sectional area of 1200 mm² is subjected to axial force as shown in figure. Find the total elongation of the bar. The modulus elasticity of brass is 110 GN/m²

b) A bar of 20mm diameter is tested in tension. It is observed that when a load of 37.7kN is applied, the extension measured over gauge length of 200mm is 0.12mm and contraction in diameter is 0.0036mm. Find the four elastic constants.

OR

- 2. a) A bar of 30mm diameter is subjected to a pull of 60kN. The measured extension on gauge length of 200mm is 0.1mm and in diameter is 0.004mm. Calculate
 i) Young's Modulus ii) Poison's Ratio iii) Bulk Modulus
 - b) Explain the stress-strain diagram for ductile and brittle materials with help of legible sketches?

UNIT–II

3. A Cantilever beam of length 4m carries a gradually varying load of zero at free end and 2 kN/m at a distance of 2m from the free end and a point load of 80 kN at a distance of 3m from free end. Draw the shear force and Bending Moment diagram for the beam.

OR

4. A simply supported beam AB of 6 m span is carrying a uniformly distributed load of 6 kN/m over a length of 3 m from left end and a point load of 75 kN at a distance of 1.5 m from right end. Draw the shear force and Bending Moment diagram for the beam and also calculate maximum bending moment.

UNIT-III

- 5. a) The cross section of a T-beam is as follows: Flange thickness=10mm; width of the flange=100mm; thickness of web=10mm; depth of the web=120mm. if a shear force of 2kN is acting a particular section of the beam. Evaluate and draw the shear stress distribution across the cross-section.
 - b) A simply supported beam carries a concentrated load at the centre of the span. If the maximum stress due to bending is 150Mpa, Find the ratio of the depth of beam section to span in order that the central deflection may not exceed 1/500 of the span.

7M

Page 1 of 2

7M

Time: 3 Hours

7M

7M

7M

14M

14M

- 6. a) A channel section made with 120mmx10mm horizontal flange and 16mmx10mm vertical web is subjected to a vertical shearing force of 120kN. Draw the shear stress distribution diagram across the section.
 - b) Show from the first principles that is a beam of rectangular section is subjected to a transverse shearing force, the maximum shear stress at a cross-section is 1.5 times the mean shear stress.

7M

14M

14M

7M

7M

7M

7M

7M

UNIT–IV

7. A steel girder of uniform cross-section section, 14m long is simply supported at the ends. It carries concentrated loads 90kN and 60kN at two points 3m and 4.5m from two ends respectively. Calculate: the deflection of the girder at the points under the two loads and the maximum deflection. Take: E=2.1x10⁵N/mm² and I=64x10⁻⁴m⁴.

OR

8. Determine the slope at the supports and maximum deflection for the beam given in the figure below using Macaulay's method. Take: $E=2x10^5N/mm^2$ and $I=80x10^{-4}$ m⁴

- 9. a) Derive the equations for the circumferential and longitudinal stresses induced in the thin spherical shells.
 - b) A shell 3.25m long and 1m diameter is subjected to an internal pressure of 1.2n/mm². If the thickness of the shell is 10mm, find the circumferential and longitudinal stresses. Find also the maximum shear stress and changes in the dimensions of the shell. Take E=200kN/mm² and the poison's ratio is 0.3.

OR

- 10. a) A cylindrical vessel is 1.5m diameter and 4m long is closed at ends by rigid plates. It is subjected to an internal pressure of 3Mpa. If the maximum principal stress is not to exceed 150Mpa, find the thickness of the shell. Also find the changes in the diameter, length and volume of the shell. Take: E=200Gpa and the poison's ratio is 0.25.
 - b) A shell of 4m long 1m in diameter is subjected to an internal pressure of 1N/mm². If the thickness of the shell is 10mm; find the circumferential and longitudinal stresses. Find also the changes in the dimensions of the shell. Take: E=200Gpa and the poison's ratio is 0.3.

Hall Ticket Number :											
Code: 7G533							<u> </u>		<u> </u>		R-17
II B.Tech. I Semeste	r Re	gular	& Su	pple	mer	ntary	/ Exc	amir	natio	ons No	ovember 2019
		Ba	sic T	herr	nod	yna	mic	:s			
		(N	echo	anico	I Eng	ginee	ering))			
Max. Marks: 70											Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- UNIT–I
- a) Discuss the macroscopic and microscopic point of view of thermodynamics with examples
 7M
 - b) A non-flow reversible process will occur for which pressure and volume are correlated by $p = v^2 + (6/v)$ where p is in bars and v is in m³. What amount of work will be done when the volume changes from 2 m³ to 4 m³. 7M

OR

- 2. a) Prove that the energy is the property of the system
 - b) 0.2 m³ of ideal gas at a pressure of 2 Mpa and 600K are expanded isothermally to 5 times the initial volume. It is then cooled to 300K at constant volume and then compressed polytropically to its initial state. Determine the net work done and heat transfer during the cycle.

UNIT–II

3.	a)	State the Kelvin plank and Clausius statements of second law of thermodynamics and prove their equivalence.	10M
	b)	A heat engine receives heat at the rate of 1500 kJ/min and gives 8.2 kW work. Calculate the Thermal efficiency and heat rejected.	4M
		OR	
4.	a)	Using Maxwell's relations deduce the two Tds equations	7M
	b)	An iron cube at 400°C is dropped into an insulated bath having 10 kg water at 25°C. Final temperature of water is 50°C. Assume the process as reversible	
		and find the change in entropy of iron and water. Take C_{pw} =4.186 kJ/kgK.	7M
		UNIT–III	
5.	a)	What is superheating.	4M
	b)	Draw the layout of Mollier diagram and explain the important properties on it.	10M
		OR	
6.	a)	Explain the working of throttling calorimeter with neat sketch.	7M
	b)	Steam initially at 1.5 MPa, 300° C expands reversibly and adiabatically in a steam turbine to 40° C. Evaluate the ideal work output of the turbine per kg of	

steam turbine to 40°C. Evaluate the ideal work output of the turbine per kg of steam. 7M

7M

		UNIT-IV	
7.	a)	Show that for an ideal gas C_p - C_v =R	7M
	b)	With help of suitable example explain the differences between heat transfer and work transfer	7M
		OR	
8.	a)	Explain free expansion process with suitable sketch	7M
	b)	Air at 250°C and 300kPa is compressed reversibly and isothermally to 1/16th of its original volume. Find the final pressure, the work done and change in	
		internal energy per kg of air	7M
9.	a)	UNIT-V Define mole, mole fraction, Avogadro's law and equation of state	7M
•	b)	A gas mixture contains 1 kg of O_2 and 3.5 kg s of N_2 . The pressure and temperature of mixture are 1 bar and $27^{\circ}C$. Determine mass and mole fractions of constituents, average molar weight of mixture.	7M
		OR	
10.	a)	Differentiate total pressure and the partial pressure, mass fraction and mole fraction	7M
	b)	4 kg of carbon dioxide at 40°C and 1.4 bar are mixed with 8 kg of nitrogen at 160°C and 1.0 bar to form a mixture at a final pressure of 0.7 bar. The process occurs adiabatically in a steady flow apparatus. Calculate: The final temperature of the mixture; (ii) The change in entropy. Take value of Cp : for $CO_2 = 0.85$ kJ/kg K and N ₂ = 1.04 kJ/kg K.	7M
