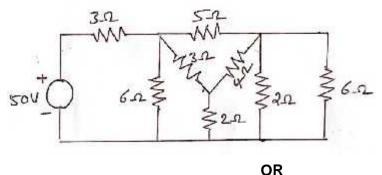
Hall Ticket Number :						
						R-I/

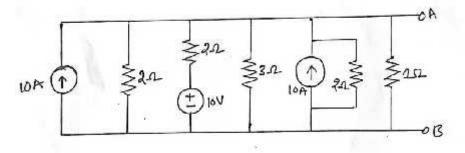
Code: 7G234

II B.Tech. I Semester Regular Examinations November 2018

Electrical Circuit and Technology


(Electronics and Communication Engineering)

Max. Marks: 70


Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT-I

- 1. a) Explain in detail super mesh analysis by taking one example.
 - b) Determine the current drawn by the circuit as shown in figure below.

2. a) By using source transformation convert following circuit into a single voltage source and single resistance

b) Derive the expression for current in terms of steady state and transient part for RC series circuit excited by a DC voltage. Also find the voltage across the resistor and power absorbed by resistor.

UNIT–II

- 3. a) Explain with aid of phasor diagram the phenomenon of resonance in a circuit containing an inductor, a capacitor and a resistor in series
 - b) A resistor of 15 , an inductance of 4H and a capacitance of 25µF are connected in series across 240V a.c supply. Calculate (i) the frequency at which the current shall be maximum. (ii) the current at this frequency (iii) the p.d across the inductance.

OR

- 4. a) Explain the following terms applied to sinusoidal alternating current wave
 (i) Maximum value (ii) Average value (iii) RMS value (iv)Form factor and
 (vi) Peak factor
 - b) Find the average value, effective value, form factor and peak factor for the square waveform such that for 0 < t < 0.01, Y=10 for 0.01 < t < 0.03, Y =0. The period is 0.03 Sec

7M

7M

7M

7M

7M

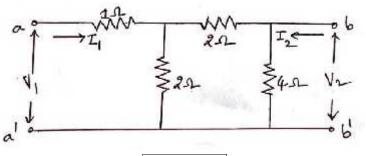
7M

7M

Time: 3 Hours

8M

6M


8M

UNIT–III

- 5. a) Derive the relations for expressing transmission parameters in terms of impedance parameters.
 - b) The impedance parameters of a two port network are Z11= 6 , Z22=4 , Z12=Z21=3 . Compute the Y-parameters and ABCD parameters and write the describing equations.

OR

- 6. a) Explain series and parallel interconnection of two port networks.
 - b) Find the Y-parameters of the network shown below.

UNIT–IV

7M

7M

6M

- 7. a) Derive emf equation of DC generator.
 - b) An 8 pole lap wound DC generator armature has 960 conductors, a flux of 40 mWb and a speed of 400 rpm. Calculate the emf generated on open circuit. If the same armature is wave wound, at what speed must it be driven to generate 400V.

OR

- 8. a) What are the different methods of speed control of DC shunt motor? Give the advantages and disadvantages.7M
 - b) How the efficiency of DC machine be predetermined by using a swinburn's test and give its advantages and disadvantages.
 7M

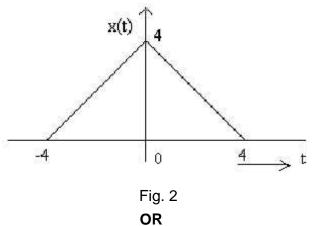
UNIT–V

- 9. a) Describe the method of calculating the regulation and efficiency of single phase transformer by open circuit and short circuit test.
 8M
 - b) A 50 KVA, single phase transformer 2300/230 has primary and secondary winding resistances of 2 and 0.02 respectively. The iron losses is equal to 412W. Calculate the efficiency at (i) Full load (ii) Half load When the power factor is 0.8

OR

10. a) Draw and explain the speed torque characteristics of three phase induction motor.
b) How the performance characteristics of three phase induction motor can be determined by brake test.
7M

Hall Tic	ket Number :	
Code: 7	G331 R-17	
Max. M	II B.Tech. I Semester Regular Examinations November 2018 Electronic Circuits (Electronics and Communication Engineering) Narks: 70 Wer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs
Alis	wer dir nve onins by choosing one question norn each onin (5 x 14 – 70 marks) ******** UNIT–I	
1. a)	Draw and explain the circuit of cascaded amplifier and mention the advantages.	7M
b)	Compare various coupling schemes used in amplifiers.	7M
	OR	
2. a)	With a neat diagram, explain in detail about the operation of direct and transformer coupled amplifiers.	8M
b)	State and prove miller's theorem.	6M
	UNIT–II	
3. a)	What are half power frequencies?	6M
b)	Derive the expression for Current gain with R_L and explain the variation of frequency Response with R_L	8M
	OR	
4. a)	Draw the Hybrid – model and discuss the significance of components present.	7M
b)	Derive the expression for Diffusion capacitance.	7M
5.	UNIT–III Derive the expression for input impedance and output impedance for the current series and current shunt feedback amplifiers.	14M
	OR	
6. a)	Explain the concept of feedback with block diagram.	7M
b)	What are the characteristics of negative feedback amplifier? Explain.	7M
	UNIT–IV	
7. a)	State and explain Barkhausen's criteria.	4M
b)	Derive the expression for frequency of oscillations of RC phase shift oscillator.	10M
	OR	
8. a)	Explain the working principle of crystal oscillator and derive expressions for frequency of oscillation.	7M
b)	Explain the working of Hartley oscillator. Also derive the expression for its frequency of oscillations.	7M
	UNIT-V	7 101
9. a)	What is Q Factor? Write about unloaded and loaded Q in tuned circuit.	7M
b)	A single tuned RF amplifier uses a transistor with an output resistance of 50 K , output capacitance of 15 pF and internal resistance of next stage is 20 k . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit.	7M
	OR	
10. a)	Draw and explain class B push pull amplifier. Show that in class B push pull amplifier the maximum conversion efficiency is 78.5%.	7M


b) Draw and explain Class B complementary symmetry power amplifier. 7M

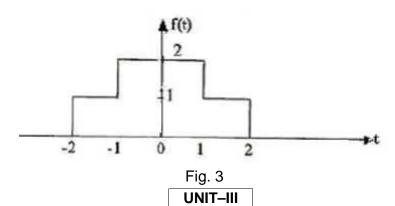
Hall	Tick	et Number :]		
Code:	760	~ 3 1	I		1	L	1	1		J	1	1		R-17	
couc.		II B.Tech. I S	Sem	este	er Re	egul	ar E	xam	ina	tions	s Nc	ven	nber	2018	
				E	nvire	onn	nen	tal S	cie	nce	•				
			ectro	nics	and	d Cc	mm	iunic	atio	n En	gine	eerin	g)	T	
		rks: 70 er all five units	sby	choc	osina	one	aue	stion	fron	nea	ch u	nit (<u></u>	5 x 14	Time: 3 Hou = 70 Marks)	irs
			, ,				*****							,	
	-)							UNIT		1					
1.	a) b)	What is an e										•		tions towards	7M
	b)	environment				ano	12 11	เรแน	lione		1 113		iinbu	lions lowards	
								OR	2						7M
2.	a)	Write the im	porta	nce	of en	viror	nmer	ntal st	udie	s.					7M
	b)	Describe the	e vari	ous r	nethe	ods t	o cre	eate e	enviro	onme	ental	awar	enes	s in the public.	7M
								JNIT							
3.	a)	Write a note				•					•				7M
	b)	What is chip	ko m	over	nent	and	write			n pre	serv	ation	of re	sources.	7M
1	2)	Evoloin with	ovor	nnlo	a tha	tuno	c of	OR	-	th ro		at oo	co oti	udioc	7M
4.	a) b)	Explain with Write a note		•		•••			Jy w	une	leval	n ca	56 511	Jules.	7M
	5)			.nerg	<i>y</i> 00			 JNIT-	-111						7101
5.	a)	What is an e	ecosy	stem	n and	l exp	-			datio	n of t	the s	ame.		7M
	b)	Explain with	relev	/ant	exam	ples	the	struc	ture	and	funct	ions	of an	eco-system.	7M
								OR	2						
6.	a)	Explain the e						-							7M
	b)	What is an e	energ	у сус	cle ar	nd ex	·			ures	of the	e sar	ne		7M
7.	a)	How ground	wata	r act	م مما	lutod		JNIT-		fowr	nooc	uro f	or it		7M
7.	a) b)	Explain brief		0	•			0.			neas	uie i	or it.		7M
	0)		iy tin	5 000	1000		on pe	OR							7101
8.	a)	Explain mari	ine p	olluti	on ai	nd ca	auses	s of it							7M
	b)	Write down t	the e	ffect	s of r	noise	poll	ution							7M
							l	JNIT-	-V						
9.	a)	How urban a							ergy	issue	es.				7M
	b)	Write a note	on r	ain w	/ater	harv	estin	•							7M
40	-)			Bass - 1	I			OR		'					
10.	a) b)	Write a note				-		-			-	n	ina		7M 7M
	b)	Discuss the	metr	ious	anu a	auva	ntag **		i all'i	wale	ы па	ivest	шy		<i>i</i> IVI

Hall Ticket Number :		
Code: 7G333	R-17	
II B.Tech. I Semester Regular Examinations November 2	2018	
Signals and Systems	-010	
(Electronics and Communication Engineering)		
Max. Marks: 70	Time: 3 Hours	
Answer all five units by choosing one question from each unit (5 x 14 =	= 70 Marks)	

UNIT-I 1. a) Sketch the waveforms of the following Signals:		
$i_{x}(t) = u(t+1) - 2u(t) + u(t-1)$		
$u_{t}y(t) = r(t+1) - r(t) + r(t-2)$		
u(x(t)) = -u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3)	<i>.</i>	~ \ /
	-	5M
b) State and prove any FOUR properties of Fourier Series.	8	3M
OR	X III	
2. a) Find the trigonometric Fourier Series for the periodic square wave f(t) illustrated in	
Fig.1 and sketch its Amplitude and Phase spectra.		
$\int f(t)$		
-3π -2π $-\pi$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ π 2π	3π t- >	
z z Fig. 1	c	3M
C C		ואוכ
 b) Define mathematically and graphically the following continuous tim signals: 	e elementary	
i. Unit Impulse Signal		
ii. Unit Step Signal		
Also, give the relation between the two.	6	5M

UNIT-II

- 3. a) State and prove time differentiation and integration properties of Fourier Transform. 6M
 - b) Find the Fourier Transform of the waveform shown in Fig. 2 in the following methods:
 - i. Using definition
 - ii. Converting first into impulses and using standard Fourier transforms


8M

6M

8M

6M

- 4. a) State and prove time shifting and frequency shifting properties of Fourier Transform.
 - b) Find the Fourier transform of the waveform shown in Fig. 3 in the following methods:
 - i. Using definition
 - ii. Converting first into impulses and using standard Fourier transforms

- 5. a) What do you understand by the term signal bandwidth and system bandwidth? Illustrate.
 - b) How to test whether the system is physically realizable or not? Give both the time domain and frequency domain conditions used to test physical realizability? Give one example of system which is realizable and one system which is not realizable.
 8M

OR

6.	a)	What is an LTI system? Discuss all its properties with examples for each.	9M
	b)	"Linear system has characteristics of filter" Support the statement.	5M
		UNIT–IV	
7.	a)	What is Aliasing? How to avoid it? Illustrate with diagrams.	6M
	b)	Perform graphical convolution of $f_1(t)$ and $f_2(t)$.	
		$f_1(t) = 3[u(t-1) - u(t-4)]$	
		$f_2(t) = u(t-2) - u(t-7)$	8M
		OR	
8.	a)	State and prove sampling theorem.	7M
	b)	Derive the relation between Auto-correlation function and Power spectral density function.	7M
		UNIT–V	
9.	a)	Give the relation between DTFT and Z-Transform.	4M
	b)	State and Prove the following properties of Laplace Transform.	
		i). Initial-value theorem	
		ii). Final-Value theorem	
		iii). Time Scaling Property	
		iv). Time Scaling Property	
		v). Time-differentiation Property	10M
		OR	
10.	a)	What is the importance of ROC? List and explain properties of ROC of Laplace	
		transform with examples.	7M
	b)	Determine the Inverse Z Transform of the function	
		$x(z) = \frac{z-z}{(1-u.2z-1)(1-z-1)}$ with ROC of $0.2 < Z < 1$	7M

							<u> </u>					
Ha	all ⁻	Ticket Nu	mber :								D 17	7
Cod	de:	7GC32									R-17	
		II B.1	ech. I	Seme	ster Reg	gular Exc	minatic	ns No	veml	ber 201	8	
				Eng	gineeri	ng Math	ematio	:s – III				
			•		(Comr	non to Al	Branch	es)			0.11	
МС		Marks: 7		te by ch		one questi	on from a				ne: 3 Hours	5
	AI			IS DY CI		*******	*		11 (5 /	x 14 – 70	MUIKS J	
						UNIT-	I					
1. a	a)				•	$x^3 - 3x - 5 =$	0 by the	metho	d of fa	lse positi	on correct	
		to three	decimal	places								7M
b	c)	Find the	real roo	ot of the	equation	$x = e^{-x}$ us	ing Newt	on-Rap	hson r	method.		7M
						O	ł					
2. a	a) Employ Taylor's method to obtain the approximate values of y at $x = 0.1, 0.2$ for the											
	~)		•				oximato	valuee	or yu	м <i>л</i> = 0.1,		
		differential equation $\frac{dy}{dx} = x - y^2$, $y(0) = 1$.										7M
b	c)	Apply Ru	inge-Ki	utta met	hod of or	der 4, com	pute y(0	.2) and	y(0.4)	from the	equation	
		$\frac{dy}{dx} = x + $	y y(0)	_ 1								
		$\frac{dx}{dx} = x + \frac{dx}{dx}$	<i>y</i> , <i>y</i> (0)	-1.								7M
						UNIT-	I					
3. a	a)	The pop	ulation	of a tow	n in the c	lecennial c	ensus wa	as giver	n belov	W		
			Yea	ar:x	189	1 1901	191	1 1	921	1931		
			Popul	ation: y	. 46	66	81		93	101		
			(in tho	ousands)	00	01		55			
		Estimate	the po	pulation	for the y	ear 1895.						7M
b	c)	Use Lag	range's	interpo	lation fo	rmula to fi	nd the va	lue of	y wh	en $x = 3.5$	from the	
		following	table									
				x	0	1	3		4			
				У	-12	0	12	2	24			7M
						O	र					

4. a) Find the first and second derivatives of the function tabulated below at the point x = 1.5

x	1.5	2.0	2.5	3.0	4.0
У	3.375	7.0	13.625	38.875	59

b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule, (iii) Simpson's $\frac{3}{8}$ rule with h = 0.5 and 0.25 7M

Page **1** of **2**

7M

7M

UNIT–III

5. a) Find the values of *a*, *b* and *c* so that $y = a + bx + cx^2$ is the best fit to the data

b) Solve
$$x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$$

OR

6. a) Determine the values of *a* and *b* by the method of least squares such that $y = ae^{bx}$ fits the following data

x	0	1	2	3
у	1.05	2.10	3.85	8.30

b) Solve $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$ by employing the method of separation of variables. 7M

UNIT–IV

7. Prove that $x^2 = \frac{f^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, -f < x < f by using Fourier series and hence show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{f^2}{6}$ 14M

OR

8. Obtain a half range cosine series for $f(x) = \begin{cases} kx, 0 \le x \le l/2 \\ k(l-x), l/2 \le x \le l \end{cases}$

and deduce the sum of the series is
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{f^2}{8}$$
 14M

9. a) Find the Fourier transform of
$$f(x) = \begin{cases} a^2 - x^2, & for |x| \le a \\ 0, & for |x| > a \end{cases}$$
 7M

b) Find the Fourier cosine transform of
$$e^{-ax}(a > 0)$$
. Hence Evaluate $\int_{0}^{\infty} \frac{\cos x}{x^{2} + a^{2}} dx$ 7M

OR

10. Obtain the Fourier sine transfromation of

$$f(x) = \begin{cases} 4x, & \text{for } 0 < x < 1\\ 4 - x, & \text{for } 1 < x < 4\\ 0, & \text{for } x > 4 \end{cases}$$
 14M

Hall T	cket Number :	
Code: 7	G332	
	II B.Tech. I Semester Regular Examinations November 2018	
	Digital Design	
Max. N	(Electronics and Communication Engineering) Narks: 70 Time: 3 Ho	ours
	wer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	

1. a)	UNIT–I Convert the following numbers:	
1. uj	(i) $(1431)_8$ to base 10	
	(ii) $(11001101.0101)_2$ to base 8 and base 4	
	(iii) (53.1575) ₁₀ to base 2	6M
b)	i. Construct even parity 7 bit Hamming code for the message 0101	
	ii. The 7-bit Hamming coded message 0011011 has been transmitted	
	through a noisy channel. Decode the message assuming that at most a	
	single error has occurred in the code word.	8M
	OR	
2. a)	Perform the following:	
	(i) Subtraction by using 10's complement for the given 5250-1321	CN 4
L.)	(ii) Subtraction by using 2's complement for the given 11010-1101	6M
b)	Why the NAND and NOR gates are called Universal gates and construct the AND, OR, NOT and EXOR gates with universal gates.	8M
		0111
3. a)	Simplify the following algebraic expressions:	
,	(i) $x'y + xy' + xy + x'y'$	
	(ii) $x' + xy + xz' + xy'z'$	
	(iii) (BC' + A'D)(AB' + CD')	9M
b)	Using K-map method, simplify the following 4-variable function	
	F(w,x,y,z) = (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)	5M
	OR	
4. a)	Convert the following expressions into SOP and POS forms	
	(i) $(AB + C)(B + C'D)$	
	(ii) $x' + x(x + y')(y + z')$	6M
b)	Simplify the following Boolean function using tabulation method	
	F(A,B,C,D) = (0, 1, 2, 5, 6, 7, 8, 9, 10, 14)	8M
_	UNIT–III	
5. a)	Explain about 4-bit magnitude comparator	8M
b)	Implement full adder circuit with one 3 x 8 decoder and two OR gates	6M

		Code: 7G3	32
6.	a)	Implement the following Boolean function with 8 x 1 multiplexer	
		F(A,B,C,D) = (0, 3, 5, 6, 8, 9, 14, 15)	7M
	b)	A combinational circuit is defined by the function	
		$F_1(A,B,C) = (3, 5, 6, 7)$	
		$F_2(A,B,C) = (0, 2, 4, 7)$	
		Implement the circuit with a PLA having three inputs, four product terms and	
		two outputs.	7M
7	-)	UNIT-IV	CN 4
7.	a)	Distinguish between synchronous and asynchronous sequential circuits	6M
	b)	What is the drawback of JK Flip-Flop and explain how it overcomes with master slave JK Flip-Flop.	8M
		OR	
8.	a)	Explain the triggering methods of Flip-flops	6M
	b)	Design modulo-8 binary counter using Flip-Flops	8M
		UNIT–V	
9.	a)	Explain the capabilities and limitations of finite-state machine	6M
	b)	Design a sequence detector to detect the binary sequence 0101 using D Flip-Flops	8M
		OR	
10.	a)	Distinguish between Mealy and Moore machines	6M
	b)	Explain the designing procedure of serial binary adder with the help of any example	8M
