							<u> </u>					
Ha	all ⁻	Ticket Nu	mber :								D 17	7
Cod	de:	7GC32									R-17	
		II B.1	ech. I	Seme	ster Reg	gular Exc	minatic	ns No	veml	ber 201	8	
				Eng	gineeri	ng Math	ematic	:s – III				
			•		(Comr	non to Al	Branch	es)			0.11	
МС		Marks: 7		te by ch		one questi	on from a				ne: 3 Hours	5
	AI			IS DY CI	ioosing c	*******	*		11 (5 /	x 14 – 70	MUIKS J	
						UNIT-	I					
1. a	a)				•	$x^3 - 3x - 5 =$	0 by the	metho	d of fa	lse positi	on correct	
		to three	decimal	places								7M
b	c)	Find the	real roo	ot of the	equation	$x = e^{-x}$ us	ing Newt	on-Rap	hson r	method.		7M
						O	ł					
2. a	a)	Employ	Tavlor's	metho	d to obta	in the app	oximate	values	ofva	t $x = 0.1$	0.2 for the	
	~)		•				oximato	valuee	or yu	м <i>л</i> = 0.1,		
		differenti	al equa	tion $\frac{dy}{dx}$	$=x-y^2$,	y(0)=1.						7M
b	c)	Apply Ru	inge-Ki	utta met	hod of or	der 4, com	pute y(0	.2) and	y(0.4)	from the	equation	
		$\frac{dy}{dx} = x + $	y y(0)	_ 1								
		$\frac{dx}{dx} = x + \frac{dx}{dx}$	<i>y</i> , <i>y</i> (0)	-1.								7M
						UNIT-	I					
3. a	a)	The pop	ulation	of a tow	n in the c	lecennial c	ensus wa	as giver	n belov	W		
			Yea	ar:x	189	1 1901	191	1 1	921	1931		
			Popul	ation: y	. 46	66	81		93	101		
			(in tho	ousands)	00	01		55			
		Estimate	the po	pulation	for the y	ear 1895.						7M
b	c)	Use Lag	range's	interpo	lation fo	rmula to fi	nd the va	lue of	y wh	en $x = 3.5$	from the	
		following	table									
				x	0	1	3		4			
				У	-12	0	12	2	24			7M
						O	र					

4. a) Find the first and second derivatives of the function tabulated below at the point x = 1.5

x	1.5	2.0	2.5	3.0	4.0
У	3.375	7.0	13.625	38.875	59

b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule, (iii) Simpson's $\frac{3}{8}$ rule with h = 0.5 and 0.25 7M

Page **1** of **2**

7M

7M

UNIT–III

5. a) Find the values of *a*, *b* and *c* so that $y = a + bx + cx^2$ is the best fit to the data

b) Solve
$$x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$$

OR

6. a) Determine the values of *a* and *b* by the method of least squares such that $y = ae^{bx}$ fits the following data

x	0	1	2	3
у	1.05	2.10	3.85	8.30

b) Solve $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$ by employing the method of separation of variables. 7M

UNIT–IV

7. Prove that $x^2 = \frac{f^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, -f < x < f by using Fourier series and hence show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{f^2}{6}$ 14M

OR

8. Obtain a half range cosine series for $f(x) = \begin{cases} kx, 0 \le x \le l/2 \\ k(l-x), l/2 \le x \le l \end{cases}$

and deduce the sum of the series is
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{f^2}{8}$$
 14M

9. a) Find the Fourier transform of
$$f(x) = \begin{cases} a^2 - x^2, & for |x| \le a \\ 0, & for |x| > a \end{cases}$$
 7M

b) Find the Fourier cosine transform of
$$e^{-ax}(a > 0)$$
. Hence Evaluate $\int_{0}^{\infty} \frac{\cos x}{x^{2} + a^{2}} dx$ 7M

OR

10. Obtain the Fourier sine transfromation of

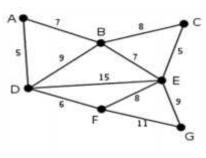
$$f(x) = \begin{cases} 4x, & \text{for } 0 < x < 1\\ 4 - x, & \text{for } 1 < x < 4\\ 0, & \text{for } x > 4 \end{cases}$$
 14M

Hall ⁻	Tick	et Number :	17
Code	e: 7G	G131 R-	17
		II B.Tech. I Semester Regular Examinations November 2018	
		Advanced Data Structures Through C++	
Max	Mc	(Computer Science and Engineering) arks: 70 Time: (3 Hours
		ver all five units by choosing one question from each unit (5 x 14 = 70 Mai	
		UNIT–I	
1.	a)	Discuss different ways of defining member functions with example	10M
	b)	Define a class and an object with syntax.	4M
		OR	
2.	a)		
		method with an example.	7M
	b)		7M
3.	2)	UNIT–II Compare and contrast Constructors and Destructors.	7M
5.	a) b)	Develop a C++ program to add two objects and store result in another ob	
	0)	using Operator Overloading.	יופטי 7M
		OR	
4.	a)	Demonstrate multi-level inheritance with a C++ program.	7M
	b)	How Bubble sort algorithm complexity values are computed? Explain.	7M
		UNIT–III	
5.	a)	Define stack. Describe the operations of stack data structure with algorithms.	10M
	b)	Compare and contrast linear queue and circular queue.	4M
-		OR	
6.	a)	Describe various collision resolution techniques.	6M
	b)	Define Dictionary and discuss various methods used to maintain dictionary.	8M
7	2)	UNIT-IV Define Rinery Tree, Demonstrate its operations with suitable examples	1014
7.	a) b)	Define Binary Tree. Demonstrate its operations with suitable examples. List the drawbacks of Binary Search Trees.	10M 4M
	b)	CISE THE GRAWDACKS OF BINARY SEARCH THEES.	4111
8.	a)		
-		i). Node with right child ii). Node with left child iii). Node with no child.	9M
	b)	Describe the computation of balance factor in AVL Trees	5M
		UNIT-V	
9.	a)	Draw a B-Tree of degree 3 and explain search operation over it.	7M
	b)		
		with an example.	7M
10.	a)	OR Describe Boyer- Moore algorithm with an example.	7M
10.	b)	Illustrate Krunth-Morris-Pratt algorithm and what is failure function in it.	
	~)	mention its algorithm complexity.	-130 7M

	- ··		
		et Number : R-17	
Code	e: 7 G	L 132	
		II B.Tech. I Semester Regular Examinations November 2018 Database Management Systems	
		(Computer Science and Engineering)	
		arks: 70 Time: 3 Ho	Urs
/	Answ	rer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1.	a)	What is data abstraction? Explain with examples, three levels of data abstraction.	7M
	b)	Define database manage system? Discuss the applications of database systems.	7M
		OR	
2.	a)	List and describe the different types of database users.	7M
	b)	Write about database architecture.	7M
		UNIT-II	
3.	a)		
		sets in E-R model.	7M
	b)	Discuss with example, key constraint and participation constraints.	7M
		OR	
4.	a)	What are foreign key constraints? Specify foreign constraints in SQL.	7M
	b)	What are key constraints? Specify key constraints in SQL.	7M
		UNIT-III	
5.		Discuss with examples, data manipulation commands in SQL.	14M
		OR	
6.	a)	Briefly discuss about SQL correlated queries with examples.	7M
	b)	Explain with examples, UNION and INTERSECT set operators in SQL.	7M
		UNIT-IV	
7.	a)	List and explain the problems caused by redundancy.	7M
	b)	What is normal form? What are the conditions are required for a relation to be	
	·	in 1NF, and 2NF and explain with example.	7M
0	2)	OR Write about functional dependencies and PCNE	71/
8.	a) b)	Write about functional dependencies and BCNF.	7M 7M
	b)	Explain with example, dependency preserving decomposition	7 111
		UNIT-V	
9.	a)	Explain lock based concurrency protocol.	7M
	b)	Write short notes on transaction support in SQL.	7M
		OR	
10.	a)	Explain about intuition for tree indexes.	7M
	b)	Briefly discuss about Indexed Sequential Access Method.	7M

Hall	Tick	et Number :	
Code	<u>م. م.</u>	R-17	
		II B.Tech. I Semester Regular Examinations November 2018 Discrete Mathematics (Computer Science and Engineering)	
-		arks: 70 rer all five units by choosing one question from each unit (5 x 14 = 70 Marks) UNIT-I	Jrs
1.	a)	Obtain the PCNF of formula ($\sim P = R$) \land (Q = P)	7M
	b)	Define Tautology with example.	7M
		OR	
2.	a)	Explain about free and bounded variables in detail in the context of predicate logic.	7M
	b)	Show that the following premises are inconsistent. If Jack misses many classes through illness, then he fails high school. If Jack fails high school, then he is uneducated. If Jack reads a lot of books, then he is not uneducated.	
		If Jack misses many classes through illness and reads a lot of books. UNIT-II	7M
3.	a)	Let A be the set of factors of a particular positive integer m and let relation $R = \{(x, y) \mid x \in A \land y \in A \land (x \text{ divides } y)\}$. Draw the Hasse diagram for	
	LA	i. m=30 ii. m=45	7M
	b)	Show that $f(y)=y/2$ is a partial recursive function.	7M
4	-)	OR	
4.	a)	 Given A={2, 3, 4}, B={2, 5, 6, 7}. Construct examples of each of the following i. All injective mappings from A to B 	
		ii. All surjective mappings from A to B which is not injective.iii. All bijective mappings from B to A.	6M
	b)	Explain the properties of Binary relation with examples.	8M
	0)	UNIT-III	0101
5.	a)	Let ({a,b},=) be a semi group ,where a*a=b , show that a*b=b*a and b*b=a.	7M
	b)	Let the set Q of all rational numbers and the operation * is defined by a*b=a+b-ab. Show that, under this operation, Q form commutative monoid.	7M
		OR	
6.	a)	How many 5 digit number can be composed of the digit in the number 1 2 3 3 4 2 3 3.	7M
	b)	How many 6 digit numbers without repetition of digits are there such that the digits are all non zero and 1 and 2 do not appear consecutively in either order?	7M

Page **1** of **2**


UNIT–IV

7.	a)	Find a generating function for the recurrence relation $a_{n+1} - a_n = 3^n$ where n 0					
		and $a_0=1$. Hence solve the relation.	7M				
	b)	Find the coefficient of x^{27} in the function $(x^4+2x^5+3x^6+)^5$					
		OR					
0	-	Colve the recommence relation of the size of farms 2 with initial conditions					

- 8. a) Solve the recurrence relation $a_n-4a_{n-1}+3a_{n-2}=0$ for n 2 with initial conditions $a_0=2$ and $a_1=4$ by using generating functions.
 - b) Solve the Recurrence Relation $a_n + 6a_{n-1} + 12a_{n-2} + 8a_{n-3} = 3^n$.

- 9. a) Define bipartite graph and planar graph. Give an example to show that $K_{3,3}$ is non planar.
 - b) Find the minimal spanning tree for the following graph using Kruskal's algorithm.

7M

7M

7M

7M

OR

- 10 a) Show that a tree with *n* vertices has *n*-1 edges.7Mb) Define the following and give suitable example for each
 - i. Euler Circuit
 - ii. Hamiltonian Circuit. 7M

Ha	ll Tic	ket Number :	٦
Cod	e: 7(R-17	
		II B.Tech. I Semester Regular Examinations November 2018 Digital Logic Design (Computer Science and Engineering)	
M		Marks: 70 Time: 3 Hour swer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I	S
1.	a)	i. Solve the following. i.i) $(2BC.A)_{16} = (_\)_8$ i.ii) $(ABC.25)_{16} = (_\)_2$. i.iii) $(AF0)_{16} = (_\)_2$ ii) What is self complementary code? Explain with the example	7M
	b)	i) Expand $A + BC + ABD + ABCD$ to min terms and max terms. ii) State commutative law and associative law OR	7M
2.	a)	i) Perform the following using 2's complement. i.i) 11010 – 1101 i.ii) 101011 – 100110	
	b)	 ii) Realize NAND Gate using OR Gates i) Obtain the truth table for the function F = xy + xy' + y'z ii) Denote the truth table for the function F = xy + xy' + y'z 	7M
		ii) Prove that the sum of all min terms of a Boolean function for three variables is 1. UNIT-II	7M
3.	a)	Obtain the minimal SOP expression for $\Sigma m(2,3,5,7,9,11,12,14,15)$ and implement	10M
	b)	i) Why are NAND and NOR gates called universal gates?ii) Implement Full-adder using NAND gates only.	4M
		OR	
4.	a)	Simplify the following Boolean expressions using K-map and implement them using NAND gates: F(W, X, Y, Z) = XZ + WXY + WXY + WYZ + WYZ.	10M
	b)	Implement Ex-OR gate using NoR gates.	4M
		UNIT–III	
5.	a)	Implement a Full-adder using two half adder and one OR gate.	7M
	b)	Implement the function f (a,b,c) = Σ m(1,3,5,6) using 4x1MUX.	7M
0	、	OR	
6.	a)	Design and implement a two bit comparator using logic gates.	7M
	b)	With neat diagram, explain 3 to 8 line decoder. UNIT-IV	7M
7.	a)	Draw the circuit diagram of S-R Flip-flop with NAND gates and explain its operation with the help of a truth table.	7M
	b)	Convert SR Flip-Flop to JK Flip-Flop.	7M
		OR	
8.	a)	Define a register. Construct a shift register from S-R flip-flops. Explain its working.	7M
	b)	Draw the excitation table of SR, T and D-flip flop.	7M
9.	a)	UNIT-V Implement the two Boolean functions with a PLA.	
	1. \	$F1(A,B,C) = \Sigma m(0,2,3,6)$ $F2(A,B,C) = \Sigma m(1,2,5,6)$	7M
	b)	Design a synchronous mod-6 counter using JK flip-flop.	7M
10.	a)	OR Design a mod-8 synchronous counter using D flip-flops. Give all the steps.	8M
10.	a) b)	Compare programmable logic devices PROM, PLA and PAL.	6M
	~)	****	2111

Hall	Ticket Number :	-
Code	R-17	
	II B.Tech. I Semester Regular Examinations November 2018	
	Web Programming (Computer Science and Engineering)	
Ma	x. Marks: 70 Time: 3 Hou	irs
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
	UNIT–I	
1. a)	Why HTML technology is not sufficient for e-commerce applications. Justify your answer.	7M
b)	Explain any five text formatting tags in HTML. Give an example.	7M
	OR	
2. a)	Illustrate with an example the concept of ordered list, un-ordered list and definition list	10M
b)	How hyperlinks are created. Explain with an example.	4M
2 0)	UNIT-II	41.4
3. a) b)	How to insert image and audio in a HTML page. Give an example. Write HTML code to create a form to the web page. The form should have text box,	4M
D)	password box, radio button, check box, List Box, Text Area and submit buttons.	10M
	OR	
4.	Write a HTML code to create the following table using HTML elements and attributes.	
	S.No Reg. No. Branch Percentage	
	1 BCE001 CSE 72% 2 BCE002 CSE 75%	
	3 BEE015 FCF 73%	14M
		1 1101
5. a)	What is CSS? Explain the ways in which CSS can be included in a HTML.	7M
b)	With an example illustrate the usage of any five font style properties using CSS.	7M
	OR	
6. a)	Create an XML for the data having the following structure.	
	address	
	nam email phone birthday	
	e i i i i i i i i i i i i i i i i i i i	
	first last year month day	7M
b)	What is DTD explain with an example.	7M
_ ·	UNIT-IV	
7. a)	What are the merits and de-merits of client side scripting	4M
b)	Write a Javascript program to display prime numbers between 1 to 100 OR	10M
8.	A six-sided die is rolled for 5000 times. Each time, the die is rolled, count the face of	
. .	the die and display number of times each face is rolled. Write a program using	
	Javascript and use random() function to indicate the face of the die.	14M

UNIT–V

9.	a)	What is the use of load() method in jQuery. Give an example.	7M
	b)	Write a basic code for adding jquery library to pages?	7M

b) Write a basic code for adding jquery library to pages?

OR

- 10. a) Name the jQuery method which is used to perform an asynchronous HTTP request? 4M
 - b) What are the advantages of using jQuery over JavaScript in ASP.NET web application? 10M