Code: 7G131

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019

Advanced Data Structures Through C++

(Computer Science and Engineering)

Max. Marks: 70
Answer all five units by choosing one question from
$* * * * * * * * *$
UNIT-I

1. a) Define inline function. Write a C++ program for finding the area of a triangle using inline function.
b) What is an exception? Explain about throwing an exception. 9M

OR
2. a) Discuss I/O streams in detail. 7M
b) Explain about new and delete operators with example programs. 7M

UNIT-II
3. a) Define constructors and destructors. Give the properties of constructors. 6 M
b) Differentiate between function overloading and function overriding. 8M

OR
4. a) Define Big-O notation and Theta notation? Give examples. 6M
b) Write a C++ program to overload + operator to concatenate two strings. 8 M

UNIT-III

5. a) Define a stack. List out any four applications of stacks. 4M
b) Discuss about linked implementation of queue ADT. 10M

OR
6. a) Explain dictionary as an ADT. 6M
b) How are insertions and deletions handled in a chained hash table? Explain. 8M

UNIT-IV

7. a) Explain in detail about binary tree traversal techniques. 4 M
b) Create max heap for the following elements (28,16,14,103,52,105,139,27,160)

OR

8. a) What is a priority queue? Explain its applications.
b) Create an AVL tree with the following elements:
(12,22,54,19,11,84,63,17,15,4,13)
UNIT-V
9. a) Define B-trees and explain the operations on it. 4M
b) Write an algorithm for insertion and deletion operations on B trees. 10 M

OR
10. Explain an algorithm with an example for Brute-Force pattern matching, and write a C++ program.

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) *********

UNIT-I

1. a) Describe about the three levels of data abstraction
b) List and explain about the main functionalities of a Database Administrator

OR

2. a) With a neat diagram explain the Database System Structure
b) Explain the differences between File Systems and DBMS 7M

UNIT-II

3. a) Construct an ER diagram for a bank Database. Bank maintains data about customers, their loans, their deposits, lockers. Determine the entities and relationships
b) What is a weak entity set? Differentiate between entity set and strong entity set 6 M

OR
4. a) Discuss various selection and projection set operations 7M
b) What is meant by Relational Model? State and explain various types of
integrity constraints with an example.

UNIT-III

5. a) Write about Views? Explain the types of views with examples. 7 M
b) Briefly discuss and compare all relation set operators? 7M

OR

6. a) Illustrate about different types of joins with a suitable example.
b) Briefly discuss about aggregate functions? Explain about 'group by' and 'having' clauses.

UNIT-IV

7. a) Explain second normal form with a suitable example.
b) Define normalization. Discuss the problems that may be caused by the
redundancy with an example.
7 M

OR
8. a) Define multivalued dependencies. Describe Fourth Normal form with an example. 7M
b) Outline 3NF. List out the problems related to Decomposition? 7M

UNIT-V

9. a) Discuss about the implementation of atomicity and durability? 7 M
b) Explain in detail about ISAM? 7 M

OR
10. a) Discuss about lock-based concurrency control. 7M
b) Explain about transaction support in SQL. 7M

Code: 7G133
R-17

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019
Digital Logic Design
(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) $* * * * * * * * *$

UNIT-I

1. a) Convert (2AC5.D $)_{\mathrm{H}}$ to decimal, octal and binary.
b) Explain subtraction using r-1's complements with an example.

OR

2. a) Express the following functions as a sum of min terms and as a product of max terms: $\quad F(A, B, C)=B^{1} C+A^{1} C+B C$
b) Reduce the following Boolean expressions to the indicated number of literals using Boolean theorems.

I. $A^{\prime} C^{\prime}+A B C+A C^{\prime}$	to THREE literals	
II. $A B C^{\prime} D+A^{1} B D+A B C D$	to TWO literals	
III. $A^{\prime} B\left(D^{\prime}+C D\right)+B\left(A+A^{\prime} C D\right)$ to ONE literal	$7 M$	

UNIT-II

3. a) Draw the multiple-level NAND circuit for the following expression:
$F=w(x+y+z)+x y z$ 7M
b) Implement the following Boolean expression with exclusive-OR and AND gates: $F=A B^{1} C D^{1}+A^{1} B C D^{1}+A B^{1} C^{1} D+A^{1} B C^{1} D$

OR

4. a) Simplify the following Boolean function together with the don't care conditions and simplify into SOP form
$F(A, B, C, D)=\sum_{m}(4,5,6,7,12,13,14), d(A, B, C, D)=\sum_{m}(1,9,11,15)$
b) Make a K-map for the function $f(x, y, z, w)=x y+x z^{\prime}+z+x w+x y$ ' $z+x y z$ and realize the minimized expression using NAND gates only

UNIT-III

5. a) Design a 4-bit ADDER/SUBTRACTOR circuit with add/sub control line.
b) Realize the function $f(A, B, C, D)=\sum(1,2,3,4,6,7,8,10,12,14,15)$ using
i) $8: 1 \mathrm{MUX}$
ii) 4:1 MUX

OR

6. a) Design and draw a full subtractor which will use two half subtractors.
b) Define decoder. Construct 3×8 decoder using logic gates.

UNIT-IV

7. a) Convert a SR flip-flop to D type flip flop? 7M
b) Explain with the help of neat diagram, the operation of 3-bit bidirectional shift register.

OR

8. a) Draw the circuit diagram of clocked D-flip flop with NAND gates and explain its operation using truth table

7M
b) Explain with the help of neat diagram, the operation of 4-bit register with
parallel load.

UNIT-V

9. a) Show that a $B C D$ ripple counter can be constructed using a 4-bit binary ripple counter with asynchronous clear and a NAND gate that detects the occurrence of count 1010

b) Derive the PLA programming table for the combinational circuit that squares a 3-bit number

OR

10. a) Explain Ring counter operation and its applications using a diagram 7M
b) Realize the following Boolean function using PROM $F(x, y, z, w)=\Sigma_{m}(0,1,3,6,8,9,15)$.7M

Code: 7G134
\square
II B.Tech. I Semester Regular \& Supplementary Examinations November 2019 Discrete Mathematics

(Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) *********

UNIT-I

1. a) Let p, q, and r be the propositions
p :You have the flu.
q :You miss the final examination.
r :You pass the course.
Express each of these propositions as an English sentence.
(i) $(p \rightarrow \neg r) \vee(q \rightarrow \neg r)$
(ii) $(\mathrm{p} \wedge \mathrm{q}) \vee(\neg \mathrm{q} \wedge \mathrm{r})$
b) Construct a truth table for $(p \leftrightarrow q) \leftrightarrow(r \leftrightarrow s)$.

OR

2. a) Show that $\neg(p \vee(\neg p \wedge q))$ and $\neg p \wedge \neg q$ are logically equivalent by developing a series of logical equivalences.
b) Prove that $\sqrt{2}$ is irrational by giving proof by contradiction.

UNIT-II

b) Let $A, B, A, 2,3,4\}$ and ve tr $\{(1,2)(2,3)(3,3)(3,4)(4,2)\}$ be a relation defin ed $_{0} n$ Fing the ${ }^{A}$ reflexive closure, symmetric closure and transitive closure of ${ }_{R}^{\text {ed }}$.

OR

4. a) Supp $\mathfrak{c}_{\dot{e}} e^{\text {that th }}$ e relation ${ }^{s} R^{1}$ and $R_{\substack{c}}$ on a set A are represented by the matrices $\mathbf{M} R_{1}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $\mathbf{M} R_{z}^{2}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
What are the matrices representing R1 \cup R2 and R1 \cap R2?
b) Draw the Hasse diagram representing the partial ordering $\left\{\left(_{a, b) \mid a}\right.\right.$ on $\{1,2,3,4,6,8,12\}$.
5. a) Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * $b=(a b) / 2$
b) If $\left(G,{ }^{*}\right)$ is a group and $a \in G$ such that $a * a=a$, then show that $a=e$, where e is identity element in G.
6. a) How many three-digit numbers are there which are even and have no repeated digits?
 $x_{1}^{3} x_{2}^{2} x_{3}^{2} x_{5}^{3}$ in $\left(x 1+x 2+x 3+{ }_{x 4}+{ }_{x 5}\right) 10$
7. a) Solve the recurrence relation ${ }^{c_{3}+9}+$
 Using generating functions. a^{n} in $a^{n}-a^{n-1}+a^{n-2}=\quad n \geq$:

OR

8. a) Solve an ${ }_{a n}^{a r}+6_{a n-2}^{3 r}=0$ where $a 0-2$ and $a 1=5$.
 $a n-5 a n-1+6 a n-2=n(n-1)$ for $n \geq 2$.

UNIT-V

9. a) What is the planar graph? Is K3,3 planar? Justify your answer
b) Prove or disprove that the following two graphs are isomorphic?

OR

10. a) What is Chromatic number? Find the Chromatic number of the following grapris:
(${ }^{i}$) ${ }^{\text {c mplete }}$ Graph (K_{n}), (ii) Cyclic ${ }_{\text {graph }}\left({ }^{(}{ }_{n}\right.$), (iii) Complete bipartite graph $K_{\text {m,n. }} \quad 6 \mathrm{M}$
b) Determine a minimum spanning tree for the following graph.

Code: 7GC32

|| B.Tech. I Semester Regular \& Supplementary Examinations November 2019

Engineering Mathematics - III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find a root of the equation $x^{3}-2 x-5=0$ by using Bisection method.
b) Find a root of the equation $x \log _{10} x=1.2$ by using Regula Falsi method.

OR

2. a) Solve $y^{\prime}=x+y$ given $y(1)=0$. Find $y(1.1)$ and $y(1.2)$ by Taylor's method.
b) Using Runge-Kutta method of order 4, find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.

UNIT-II

3. a) Find the cubic polynomial which takes the following values. Hence find $f(4)$.

x	0	1	2	3
y	1	2	1	10

b) Use Lagrange's Interpolation formula to the following data to find the values of y when $x=10$.

x	5	6	9	11
y	12	13	14	16

4. a) Apply Trapezoidal rule to evaluate $\int_{0}^{6} x \sec x d x$.
b) Use Simpsons $1 / 3^{\text {rd }}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$.

UNIT-III

5. a) Fit a straight line of the form $y=a x+b$ to the following data,

x	1	2	3	4	5	6	7	8
y	5.4	6.3	8.2	10.3	12.6	14.9	17.3	19.5

b) Solve the Partial differential equation $p^{2}+q^{2}=x+y$ by Charpit's method.

OR

6. a) Fit the second degree parabola to the following data.

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) Using method of separation of variables, Solve $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(x, 0)=4 e^{-x}$.

UNIT-IV

7. a) Expand the function $f(x)=x \sin x$ as Fourier series in the interval $-\pi \leq x \leq \pi$. Deduce that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\frac{1}{7.9}+\ldots=\frac{1}{4}(\pi-2)$.
b) Expand $f(x)=\frac{x}{2}$ as a Fourier series in the interval $-\pi<x<\pi$.

OR

8. a) Express $f(x)=x$ as a half range cosine series in $0<x<2$.
b) If $f(x)=\left\{\begin{array}{cc}x, & 0<x<\pi / 2 \\ \pi-x, & \pi / 2<x<\pi\end{array}\right.$ then show that
$f(x)=\frac{4}{\pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x+\cdots\right]$.

UNIT-V

9. a) Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\omega \sin x \omega}{1+\omega^{2}} d \omega=\frac{\pi}{2} e^{-x},(x>0)$.
b) Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$.

OR

10. a) Find the Fourier sine transform of $x e^{x}$.
b) Find the finite Fourier sine and cosine transform of $f(x)=2 x, 0<x<4$.

II B.Tech. I Semester Regular \& Supplementary Examinations November 2019 Web Programming

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) List the new features in HTML5 comparing with earlier versions. 7M
b) Write any Five Text Processing elements in HTML?
OR
2. a) Why you need links in html? Explain the with an example to create a Link to
different page
b) Differentiate HTML5 with other versions 7M

UNIT-II

3. a) Write about IMG tag with attributes. How to insert video or audio using img element in web page.

b) Describe basic table element and attributes with example

OR

4. a) Demonstrate how to Structure the Forms with <fieldset> and <legend> Elements. Give example 7M
b) Create more Usable Form Fields with example 7M
UNIT-III
5. a) Write about text pseudo-classes and styling text with example 7M
b) Explain with an example illustrating the box model, links, backgrounds, list properties 7M
OR
6. a) Write the basic structure XML document. 7M
b) What is DTD? Give DTD Elements and attributes with example 7M
UNIT-IV
7. a) How to Add a Script to web Pages and comments in JavaScript 7M
b) Explain how to create an External JavaScript with example 7M
OR
8. a) Demonstrate a user defines function with parameters 7M
b) List the conditional statements, loops and events in javascript with example 7M
UNIT-V9. a) How to add jQuery to a web page7M
b) Explain how to manage events with jQuery in web page 7M
OR
9. a) Write about how to send a request to and response from server using ajax with example 7M
b) What is DOM and explain about DOM elements and attributes with example 7M
