\square

Code: 19A235T

II B.Tech. I Semester Regular Examinations March 2021

Basic Electronics, Electrical \& Mechanical Technology

(Civil Engineering)

Max. Marks: 70
 Time: 3 Hours
 Answer five questions by choosing one question from each unit ($5 \times 14=70$ Marks)
 Use separate booklets for Part-A \& Part-B

PART-A

		Marks	CO	Blooms Level
	UNIT-I			
1. a)	State and explain the Kirchoff's laws?	7M	CO1	L1
b)	Explain the principle operation of DC motor?	7M	CO1	L1
	OR			
2. a)	Explain the principle operation of DC generator?	7M	CO1	L1
b)	Mention applications of DC motor?	7M	CO1	L1
	UNIT-II			
3. a)	Enumerate the various losses in a transformer?	7M	CO 2	L1\&L3
b)	Explain the principle operation of single phase transformer?	7M	CO2	L1\&L3
	OR			
4. a)	Define the term of Efficiency and regulation of a transformer?	7M	CO2	L1\&L3
b)	Explain the principle operation of three phase induction motor?	7M	CO2	L1\&L3
	UNIT-III			
5. a)	Explain the VI characteristics of a diode?	7M	CO3	L1\&L3
b)	Explain the operation of full wave rectifier with neat diagram?	7M	CO3	L1\&L3
	OR			
6. a)	Explain the principle of CRT?	7M	CO3	L1\&L3
b)	What are the applications of CRO?	7M	CO3	L1\&L3
	PART-B			
	UNIT-IV			
7. a)	Explain TIG Welding with a neat sketch	7M	CO4	L2
b)	Differentiate between TIG and MIG Processes	7M	CO4	L2
	OR			
8. a)	Restate the following			
	i) COP ii) Wet bulb temperature iii) Relative Humidity iv) Ton of Refrigeration v) temperature and humidity required for the comfort air conditioning.	7M	CO5	L2
b)	Discuss about Room Air Conditioners.	7M	CO5	L2
	UNIT-V			
9. a)	Explain the working principle of two stroke petrol engine	7M	CO4	L2
b)	Summarize the functions of main components of an IC Engine	7M	CO4	L2
	OR			
10. a)	Interpret Positive Displacement compressor with reference to Reciprocating Air Compressor	7M	CO5	L2
b)	Restate the advantages of multi compression	7M	CO	L2

\square
Code: 19A131T
II B.Tech. I Semester Regular Examinations March 2021

Building Materials and Construction

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

	UNIT-I			
1. a)	Briefly discuss classification of the building stones?	7M	CO1	L
b)	Briefly explain (i) stone quarrying and (ii) characteristics of good brick earth?	7M	CO1	L
	OR			
2. a)	What are the various methods of manufacture of bricks? Discuss any one method.	7M	CO1	
b)	Briefly compare between clam burning and kiln burning of bricks?	7M	CO1	L
	UNIT-II			
3. a)	What are the uses of bituminous material and gypsum in construction work? Also explain their quality required for building works?	7M	CO2	
b)	State the general properties of any two roofing materials?	7M	CO 2	L
	OR			
4. a)	Briefly explain the use of colored cement, rapid hardening Portland cement, high alumina cement and low heat cement?	7M	CO 2	
b)	Briefly explain compare the binding material cement and lime?	7M	CO 2	L
	UNIT-III			
5. a)	What are the properties of good timber for building works? Briefly explain.	7M	CO3	L
b)	Explain the characteristics of galvanized iron and Fiber-reinforced plastics for building construction?	7M	CO3	L
	OR			
6. a)	What are the different types of defects in timber?	7M	CO 3	
b)	Explain natural seasoning and artificial seasoning of timber?	7M	CO 3	L
	UNIT-IV			
7. a)	Differentiate between cavity and partition wall with the help of sketches?	7M	CO4	L
b)	Explain with neat sketches different types of masonry works?	7M	CO4	L
	OR			
8. a)	Explain the various types of shallow foundation?	7M	CO 4	L
b)	List various types of bonds in brick walls and briefly explain any two with the help of sketches?	7M	CO4	
	UNIT-V			
9. a)	List different types of staircases and explain any two with neat sketch?	7M	CO	
b)	Explain different types of floors?	7M	CO5	
	OR			
10. a)	What is plastering? Discuss different types of paints?	7M	CO5	
b)	Differentiate the following with reference to roofs (i) flat and curved Roofs. (ii) King and Queen Post Trusses.	7M	CO5	

R-19

Code: 19A134T

II B.Tech. I Semester Regular Examinations March 2021

Fluid Mechanics

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A plate 0.0254 mm distant from a fixed plate, moves at $61 \mathrm{~cm} / \mathrm{sec}$ and requires a force of $0.2 \mathrm{~kg}(\mathrm{f}) / \mathrm{m}^{2}$ to maintain this speed. Determine the dynamic viscosity of the fluid between the plates.
b) An open tank contains water in its bottom up to 2 m depth and then oil of specific gravity 0.8 up to a depth of 1.5 m . Determine the pressure at the bottom of the tank and at the interface of water and oil.

OR

2. a) Determine the capillary rise in a glass tube of 3 mm diameter when inserted vertically in water and mercury (Hg). The values of surface tensions for water and Hg in contact with air are $0.073 \mathrm{~N} / \mathrm{m}$ and $0.44 \mathrm{~N} / \mathrm{m}$, respectively. Assume the values of specific gravity of mercury as 13.6 and the angle of contact for Hg and water as 130° and 0°, respectively.
b) A wooden body of height 73 mm floats in a water tank of height 25 mm projecting above the water surface. The same wooden body when placed in glycerine tank is projected 37.5 mm above the surface of glycerine. Find (i) the relative density of the wooden body and (ii) the relative density of glycerine

UNIT-II

3. a) Define Pascal Law and derive the same.
b) What are manometers? Give its classification, advantages and limitations.

OR

4. a) Define the terms (i) hydrostatics, (ii) total pressure and (iii) centre of pressure.
b) A metallic body weighs 500 kN in air and 250 kN in water. Determine the volume of body and its specific gravity.

UNIT-III

5. The velocity vector in two different flow fields is given by the equations (i) $\mathrm{V}=(2 \mathrm{xi}-2 \mathrm{yj})$. Determine the equations of streamline when it passes through a point $\mathrm{A}(3,2)$.

OR

6. A venturimeter has a diameter of 0.2 m at the inlet and 0.1 m diameter at the throat. It is fitted in a horizontal pipeline to measure the flow of oil of specific gravity 0.82 . If 5900 kg of oil is collected in 2 minutes and the difference of levels in the U-tube differential manometer reads 0.185 m Hg , then determine the discharge coefficient for the pipe venturimeter. Take specific gravity of mercury as 13.6.

UNIT-IV

7. a) The diameter of a horizontal pipe suddenly reduces from 0.4 m to 0.2 m due to which
pressure changes from $125 \mathrm{kN} / \mathrm{m}^{2}$ to $105 \mathrm{kN} / \mathrm{m}^{2}$. If the coefficient of contraction is 0.62 , then find the flow rate of water.
b) Explain the principle of water hammer in pipes.

OR

8. Three pipes connected in series have diameters as $0.3 \mathrm{~m}, 0.2 \mathrm{~m}$ and 0.4 m and lengths as $400 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m and coefficients of friction as $0.007,0.0072$ and 0.0074 , respectively. If the pipes join two water reservoirs A and B having a difference in water surface levels as 15 m , then determine the discharge of water considering minor energy losses and neglecting minor energy losses.

UNIT-V

9. a) A closed tank partially filled with water discharges through an orifice of 12.5 mm diameter and has a coefficient of discharge of 0.65 . If air is pumped into the upper part of the tank, determine the pressure required to produce a discharge or 36.6 litres/minute when the water surface is 1 m above the outlet.
b) Define and compare a notch and a weir.

OR

10. Show by method of dimensional analysis that the resistance R to the motion of a sphere of diameter D moving with uniform velocity V through a fluid having density ρ and viscosity may be expressed as

$$
R=\left(\rho \mathrm{D}^{2} \mathrm{~V}^{2}\right) \phi\left(\frac{\mu}{\rho V D}\right)
$$

10M CO5 L4
\square
Code: 19AC34T \square
R-19

II B.Tech. I Semester Regular Examinations March 2021
 Life Sciences for Engineers

(Common to CE, ME \& CSE)

Max. Marks: 70

Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is meant by classification and explain about living organisms based on their cellular life.
$7 \mathrm{M} \quad 1 \quad 2$
b) Differentiate between prokaryotes and eukaryotes.
2. a) What is molecular taxonomy and how the organisms classify?
b) Explain about biological organisms comparing with manmade systems.
7M 1

UNIT-II
3. Explain the structure and functions of proteins.

OR

4. a) Describe briefly about antibodies.
7M 22
b) Explain the process of fermentation and its industrial applications.

7M 2
2

UNIT-III

5. Explain the reactions that occur in glycolysis.

OR

6. a) What is synapse and describe about neuromuscular junctions?
7M $3 \quad 2$
b) Explain about electron transport system.
$7 \mathrm{M} \quad 3 \quad 2$

UNIT-IV

7. a) What are the characteristics of Mendal's laws and explain with suitable examples?

7M 4
b) Write the differences between mitosis and meiosis?

7M 4

OR

8. a) Describe briefly about eukaryotic DNA replication.
7M 4
b) Briefly explain about central dogma of molecular biology.

UNIT-V

9. Describe briefly about recombinant vaccines.

OR
10. a) Write short notes on transgenic microbes.

$7 M$	5	1

b) Explain the salient features of animal cloning.

Code: 19A133T
II B.Tech. I Semester Regular Examinations March 2021
Mechanics of Materials
(Civil Engineering)
Max. Marks: $70 \quad$ Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Draw a stress - strain curve for mild steel, indicate salient points and define them.

Marks CO | Blooms |
| :---: |
| Level |

b) A straight circular rod tapering from diameter 'D' at one end to a diameter'd' at the other end is subjected to an axial load ' P '. Obtain an expression for the elongation of the rod.

OR

2. a) Derive the relation between Modulus of elasticity, Modulus of rigidity and Bulk Modulus.
b) Derive an expression for the stress induced in a body due to suddenly applied load and hence find the value of extension produced in the body.

UNIT-II

3. a) A simply supported beam of length 8 m rests on supports 6 m apart, the right hand end is overhanging by 2 m . The beam carries a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ over the entire length. Draw S.F. and B.M diagrams and find the point of contra flexure, if any.
b) Write down the sign conventions for shear force and bending moment in general.

$9 M$	2	2
$5 M$	2	1

OR

4. a) A cantilever 4 m long is loaded with a uniformly distributed load of $4 \mathrm{kN} / \mathrm{m}$ run over a length of 1 m from the free end. It also carries a point load of 3 kN at a distance of 0.5 m from the free end. Draw the Shear force Diagrams and Bending Moment diagrams.
b) Derive the relation between Shear force and bending moment.

UNIT-III

5. a) Derive the bending equation from fundamentals using standard notation.
b) A timber cantilever 200 mm wide and 300 mm deep is 3 m long. It is loaded with a U.D.L of $3 \mathrm{kN} / \mathrm{m}$ over the entire length. A point load of 4 kN is placed at the free end of the cantilever. Find the maximum bending stress produced.

OR

6. Derive the stress distribution for circular section \& plot shear stress distribution.

UNIT-IV

7. a) Find an expression for the slope at the supports of a simply supported beam, carrying a point load at the centre.
b) A cantilever of length 6 m is carrying a point load of 25 kN at the free end. if the moment of inertia of the beam (i.e. I) is given as equal to $8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and value of $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find (i)slope of the cantilever at the free end (ii) deflection at the free end.

OR

8. A simply supported beam of span 10 m loaded point load of 14 kN at its centre, in
addition to the UDL of $6 \mathrm{kN} / \mathrm{m}$ for the whole span. Find slopes at the supports and
9. A simply supported beam of span 10 m loaded point load of 14 kN at its centre, in
addition to the UDL of $6 \mathrm{kN} / \mathrm{m}$ for the whole span. Find slopes at the supports and maximum deflection. Use double integration method.
10. A body is subjected to direct stresses in two mutually perpendicular directions accompanied by a simple shear stress. Draw the Mohr's circle of stresses and explain how you will obtain the principal stresses and principal planes.

OR

10. Define and explain the following theories of failure:
(i) Maximum principal strain theory
(ii) maximum shear strain theory.

Code: 19AC31T
II B.Tech. I Semester Regular Examinations March 2021
Partial Differential Equations and Complex Variables
(Common to CE, EEE, ME \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I
$\left\{\begin{array}{cc}\cos t, & 0<t<\pi \\ \sin t, & t>\pi\end{array}\right.$

Marks CO | Blooms |
| :---: |
| Level |

1. a) Find the Laplace Transform of $f(t)=\left\{\begin{array}{c}\cos t, 0<t<\pi \\ \sin t, \quad t>\pi\end{array}\right.$

7M CO1 L1
b) Find $L\left(\frac{\cos 2 t-\cos 3 t}{t}\right)$

OR

2. a) Find the Laplace transform of $e^{4 t}(\sin 2 t \cos t)$

7M CO1
b) Find the Laplace transform of $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t<1 \\ -1, & 1 \leq t<2\end{array}\right.$ having period 2

UNIT-II
7M CO1
L1
3. a) Find the inverse Laplace Transform of $\frac{1}{\left(s^{2}+1\right) s}$

7M CO2
L1

7M CO2

OR
4. Solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=5 \sin t$, if $y(0)=y^{\prime}(0)=0$

UNIT-III

5. Expand $f(x)=x-x^{2}$ as Fourier series in the interval $(-\pi, \pi)$ and hence obtain $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12}$ 14M CO3

OR

6. a) Find a Fourier series to represent $f(x)=x \sin x, \quad-\pi<x<\pi$ and hence deduce that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\ldots .=\frac{1}{4}(\pi-2)$
b) Express $f(x)=x^{2}$ as half -range sine series in $0<x<4$

7M CO3

UNIT-IV

7. If a string of length ℓ is initially at rest in the equilibrium position and each of its points is given, the velocity $V_{0} \sin ^{3} \frac{\pi x}{\ell}$ find the displacement $y(x, t)$.
8. An insulated rod of length ℓ has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state condition prevails. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, Find the temperature at a distance x from A at time t.
$7 \mathrm{M} \quad \mathrm{CO} 3$

UNIT-V

9. Show that the function $f(z)=\left\{\begin{array}{c}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, \text { if } z \neq 0 \\ 0 \quad, \text { if } z=0\end{array}\right.$ is not analytic at origin, even though $C-R$ equations are satisfied at origin.

OR

10. a) Show that the function $v(x, y)=\sin x \cosh y+2 \cos x \sinh y+x^{2}-y^{2}+4 x y$ satisfies Laplace equation and find the corresponding analytic function $u+i v$
b) Verify Cauchy's theorem for the function $f(z)=3 z^{2}+i z-4$ taken over the boundary of the square with vertices $1 \pm i$ and $-1 \pm i$

Surveying

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
Marks
UNIT-I1. a) Explain the classification of survey4M
b) The distance between two points A and B measured along slope is 504 m . Find the horizontal distance between A and B when i) The angle of slope is $12^{\circ}{ }^{\circ}$) The slope is 1 in 4.5 and , iii) the difference in elevation of A and B is 65 m 10M
OR
2. With neat sketches, explain different types of obstacles in chaining 14M
UNIT-II
3. a) The following consecutive readings were taken with the help of dumpy level 1.904, 2.653, $3.906,4.026,1.964,1.702,1.592,1.261,2.542,2.006$ and 3.145 . The instrument was shifted after fourth and seventh readings. The first reading was taken on the staff held on BM of RL 100 m . Determine the R.L. of the various points by rise and fall method.
b) Mention the uses of counter map.

OR

4. Describe briefly methods involved in calculating the areas.

UNIT-III

5. a) Explain the permanent and temporary adjustments of Verniar theodolite.
b) Explain the measurement of a horizontal angle by repetition method.

OR

6. The following observations are lengths and bearings of the lines of traverse ABCDE, the length and bearing of EA have been omitted. Calculate the length and bearing of the line EA.

Line	AB	BC	CD	DE	EA
Length (m)	204	226	187	192	$?$
Bearing	$87^{\circ} 30^{\prime}$	$20^{\circ} 20^{\prime}$	$280^{\circ} 0^{\prime}$	$210^{\circ} 3^{\prime}$	$?$
UNIT-IV					

7. a) Explain the method of setting out a curve by radial offsets from tangents. 12M
b) List the various types of curves.

OR

8. a) Explain the principles and characteristics of EDM 6M
b) Discuss about microwave and electro optical system adopted in total station. 8M

UNIT-V

9. a) Explain the three point problem in Plane Tabling. 10M
b) List the instruments used in Plane Table Surveying. 4 M
OR
10. a) Explain the difference between tangential and stadia tachometry 7M
b) How will you determine the stadia constants? Explain. 7M
