	Hall Ticket Number :			٦
	Code: 19A333T	R-19		
	II B.Tech. I Semester Regular Examinations March 2021			-
	Basic Thermodynamics			
	(Mechanical Engineering)			
		ne: 3 F		5
	Answer all five units by choosing one question from each unit (5 x 14 = 70 / ********	Marks		
	Steam Tables, Mollier chart are permitted	Marks	СО	Blooms Level
	UNIT–I			
1. a)) Define the following			
	(i) internal energy (ii) Perpetual motion machine of first kind-PMM 1	4M	1	L2
b)				
	180 m/s with an enthalpy of 4 KJ/kg. The steam leaves the turbine at 1.2 bar and			
	with a velocity of 60 m/s with an enthalpy of 2KJ/kg. Assuming the process to be reversible adiabatic, determine the work done per kg of steam flow through the			
	turbine. Neglect the change in potential energy.	10M	1	L3
	OR	-	-	
2. a)	What is positive and negative work?	4M	1	L2
b)				
,	rejects 100 kJ/s passing through the system. The conditions of the fluid at inlet and			
	outlet are given as : C1 = 320 m/s, p1 = 6.0 bar, u1 = 2000 kJ/kg, v1=0.36 m ³ /kg			
	and C2 = 140 m/s, p2 = 1.2 bar, u2 = 1400 kJ/kg, v2 = 1.3 m ³ /kg. The suffix 1 indicates the condition at inlet and 2 indicates at outlet of the system. Determine			
	the power capacity of the system in MW. The change in potential energy may be			
	neglected.	10M	1	L3
	UNIT–II			
3. a)) Define heat engine and heat pump.	4M	2	L2
b)	Prove Maxwell Equations.	10M	2	L3
	OR			
4. a)	Write the following statements of second law of thermodynamics.			
	(i) Clausius statement (ii) Kelvin-Planck statement.	4M	2	L2
b)				
	from an infinite source at 1200 K. If the surrounding temperature is 290 K, find the		_	
	loss in available energy due to above heat transfer.	10M	2	L3
		45.4		
5. a)		4M	3	L2
b)) A quantity of steam at 10 bar and 0.85 dryness occupies 0.15 m ³ . Determine the heat supplied to raise the temperature of the steam to 300°C at constant pressure			
	and percentage of this heat which appears as external work. Take specific heat of			
	superheated steam as 2.2kJ/kgK	10M	3	L3
	OR			

6	. a)	Explain the following terms relating to steam formation			
		(i) Dryness fraction of steam (ii) Enthalpy of wet steam	4M	3	L2
	b)	Find the internal energy of 1 kg of steam at 20 bar when (i) it is superheated, its			
		temperature being 400°C ; (ii) it is wet, its dryness being 0.9. Assume superheated			
		steam to behave as a perfect gas from the commencement of superheating and	4014		
		thus obeys Charle's law. Specific heat for steam = 2.3 kJ/kg K.	10M	3	L3
		UNIT-IV			
7	. a)	What is the difference between an ideal gas and a perfect gas?	4M	4	L2
	b)	One kg of CO ₂ has a volume of 1 m ³ at 100 °C. Compute the pressure by			
		(i) Van der Waal's equation and (ii) perfect gas equation.			
		Take(a= 362850N-m ⁴ /(kg-mole) ² and b=0.0423m ³ /kg-mole)	10M	4	L3
		OR			
8	. a)	State Boyle's Law and Charle's Law.	4M	4	L2
	b)	A steel flask of 0.04 m ³ capacity is to be used to store nitrogen at 120 bar, 20 °C.			
		The flask is to be protected against excessive pressure by a fusible plug which will			
		melt and allow the gas to escape if the temperature rises too high. (i) How many kg			
		of nitrogen will the flask hold at the designed conditions? (ii) At what temperature			
		must the fusible plug melt in order to limit the pressure of a full flask to a maximum of 150 bar?	10M	1	L3
			TON	4	L3
0		UNIT-V			
9	. a)	State the following:	484	_	
	L.)	(i) Mass fraction (ii) Mole fraction	4M	5	L2
	b)	A mixture of hydrogen (H ₂) and Oxygen (O ₂) is to be made so that the ratio of H ₂ to O_2 is 2 : 1 by volume. If the pressure and temperature are 1 bar and 25 °C			
		respectively, calculate: (i) The mass of O_2 required and (ii) The volume of the			
		container.	10M	5	L3
		OR	-	-	
10	a)	What is the generalized compressibility chart?	4M	5	L2
10	b)	The analysis by weight of a perfect gas mixture at 20 °C and 1.3 bar is 10% O_2 ,		0	LZ
	D)	70% N ₂ , 15% CO ₂ and 5% CO. For a reference state of 0 °C and 1 bar determine:			
		(i) Partial pressures of the constituents and (ii) Gas constant of mixture.	10M	5	L3
		****		-	-

	На	II Ticket Number :														-
	Cor	de: 19A236T												R-19		
	00	II B.Tech	. I Seme	este	r Re	gulo	ar Ex	ami	nati	ons	Mar	ch 20)21			
			c Elect			-										
			(Me	chai	nica	l Eng	ginee	ering)			T' .		1	
	Ma	x. Marks: 70 Answer all five unit	ts by cho	osing	g on		estio		m ec	ach u	unit (5 x 14		ne: 3 I Marks		S
														Marks	со	Blooms Level
					UN	IT-I										Lover
1.	a)	Explain the following	g terms													
		i) Potential differen	ce ii) Ohm	n's la	w iii)	Curre	ent							7M	1	L1
	b)	In the network show all resistors?	n in fig fir	nd all	the	brand	ch cu	rrents	and	volta	age d	rops ac	cross			
			A	2Ω ₩	в		4Ω			с						
							-~~~]						
		12 '	v $(\stackrel{+}{\rightarrow})$		₹ 5	Ω				ξ _{6Ω}						
			Ŷ		Ś					Ś						
					Ē					Ţ				7M	1	L1
			F			OR				D				7 111	I	LI
2.	a)	Derive the relations	hin to exi	oress		-	lta co	nner	ted i	resist	ance	s into t	hree			
	с,	equivalent star resis				,				00101		0 1110		7M	1	L1
	b)	Find R _{ab} across the	terminals	a-b	of the	e netv	work	show	n in f	ig?						
			5	Ω		5Ω		5Ω								
		a o -	w	~~	Ş	~~~~	Ş.	-~~~~ 0								
		-	sΩ≸	5Ω	₹		چ گ	22	¥	5Ω						
		2 1	' <u>°</u> ≩			{ ₹5£	0		Ĩ	J 32						
				~~	-	{``		-~~~		-ob						
				Ω				5Ω						7M	1	L1
					UN	IT–II										
3.	a)	Derive from first prir	nciples an	expi	ressi	on fo	r the	e.m.f	. of a	d.c.	gene	rator?		7M	2	L1
	b)	A d.c. series gene										series				
		resistance of 0.03 coils on the armatur														
		at the load. Assume					•						•			
		brush drop as 2 V?	•				•		•					7M	2	L3
					(OR										
4.	a)	Explain the principle	e of workir	ng of	d.c.	moto	r?							7M	2	L1
	b)	A 4 pole,240 V, way					•						•			
		1000 r.p.m. and or respectively. It has	•													
		1 V per brush, calc										-				
		(iv) Rotational losse				``			•	. /			-	7M	2	L3
														Doge	e 1 of	2

Code:	19A236T
-------	---------

		UNIT–III			
5.	a)	Explain the principle of working of a single phase transformer?	7M	3	L2
	b)	Explain the synchronous impedance method for calculating the regulation of a three phase alternator?	7M	3	L2
		OR			
6.	a)	Explain the construction of a three phase induction motor?		3	L2
	b)	A 20 KVA transformer has its maximum efficiency of 0.98 at 15 KVA at unity power factor. The iron loss is 350 W. calculate the efficiency at full load 0.8 power factor lagging and unity power factor?	7M	3	L2
			7 101	0	LZ
7.	a)	Explain the operation of forward biased diode along with its forward characteristics?	7M	4	L1
	b)	Explain the working of pnp transistor?		4	L1
	~)	OR		•	
8.	a)	Draw and explain input and output characteristics for transistor CE configuration?	7M	4	L1
	b)	The four semiconductor diodes used in a bridge rectifier circuit each having a forward resistance of 0.1 and infinite reverse resistance, feed a d.c. current of 10 A to a resistive load from a sinusoidally varying alternating supply of 30 V (r.m.s). Determine the resistance of the load and the efficiency of the circuit.	7M	4	L1
		UNIT-I			
9.	a)	Explain the principle of induction heating. Which are the two types of induction heating?	7M	5	L2
	b)	Draw the block diagram of general purpose CRO. Explain the functions of various blocks?	7M	5	L2
		OR			
10.	a)	Explain the theory of dielectric heating. State its advantages and industrial applications.	7M	5	L2
	b)	Explain the applications of induction heating	7M	5	L2

	Н	all Ticket Number :			1
	Сс	ode: 19A334T	R-19		
		II B.Tech. I Semester Regular Examinations March 2021			
		Kinematics of Machinery			
		(Mechanical Engineering)		1	
	M	Tir Answer all five units by choosing one question from each unit (5 x 14 = 70 ********	ne: 3 H Marks)		5
			Marks	со	Blooms Level
		UNIT–I			Lover
1.	a)	Define the following.			
		i. Kinematic link ii. Kinematic pair iii. Kinematic chain,	7M	1	L1
	b)	Discuss completely constrained motion and In-completely constrained motion			
		with suitable example.	7M	1	L1
		OR			
2.	a)	Discuss the inversions of quadratic cycle chain mechanism	7M	1	L2
	b)	Define Degree of freedom, briefly discuss the Grubler's equation to find the			14
		degrees of freedom for a plane mechanism.	7M	1	L1
3.		UNIT-II The engine mechanism shown in Fig has crank $OB = 50$ mm and length of			
5.		connecting rod AB= 225 mm. The centre of gravity of the rod is at G which is			
		75mm from B. The engine speed is 200 r.p.m. For the position shown, in which			
		OB is turned 45° from OA, Find 1. the velocity of G and the angular velocity of			
		AB, and 2. the acceleration of G and angular acceleration of AB.			
		В			
		G			
		45°			
		A 0	14M	C	L3
		OR	1411	2	LJ
4.		A pin joined four bar mechanism as shown in Figure 2, has various dimensions as			
4.		follows: AB= 300mm, BC=CD=360mm, and AD=600mm. The angle BAD=60 ^o .			
		The crank AB rotates uniformly at 100 rpm. Locate all the instantaneous centres			
		and find the angular velocity of the link BC.			
		360mm gC			
		Bo			
		Se la			
		3			
		A BO			
		600 mm			
		Figure: 2	14M	2	L3
		UNIT–III			
5		Describe with a neat sketch the Hart's straight line motion mechanism and prove			

5.Describe with a neat sketch the Hart's straight line motion mechanism and prove
that the tracing point 'P' describe a straight line path.14M3

L2

L6

6. a) Discuss the condition for correct steering explain? 7M 3 L2 b) Two shafts which are inclined at an angle of 160° are connected by a Hook's joint. The driving shaft runs at a uniform speed of 1500 rpm. The driven shaft carries a flywheel of 12kg and 10cm radius of gyration. Find the maximum angular acceleration of the driven shaft and the maximum torgue required. 3 L3 7M UNIT-IV 7. a) Discuss the phenomena of interference in toothed gearing. 4M 4 L2 b) The pitch circle radii of two involute spur gears in mesh are 51.5mm and 64.2mm. The outer circle radii are 57.5mm and 71.2mm respectively. The operating pressure angle being 20°. Determine i) Length of path of contact ii) contact ratio if the number of teeth on the gear is 20. 10M 4 L5

OR

- 8. An eipicyclic gear train as shown in Figure 3 has sun wheel S of 30 teeth and two planet wheels P, P of 50 teeth. The planet wheels mesh with the internal teeth of a fixed annulus A. The driving shaft carrying the sun wheel transmits 4kW at 300 rpm. The driven shaft is connected to an arm which carries the planet wheels.
 - Figure: 3
 14M

 Figure: 3
 4

 L5

 UNIT-V

 A Cam rotating clockwise at a uniform speed of 1000 rpm is required to give a knife edge follower the motion defined below.

 i. Follower to move outward through 2.5cm during 120° of cam rotation

 ii. Follower to dwell for next 60° of cam rotation.

 iii. Follower to return to its starting position during next 90° of cam rotation
 - iv. Follower to dwell for the rest of the cam rotation.

9.

OR

10. Design a cam for operating the exhaust valve of an oil engine. It is required to give equal uniform acceleration and retardation during opening and closing of the valve each of which corresponds to 60° of cam rotation. The valve must remain in the fully open position for 20° of cam rotation. The lift of the valve is 37.5mm and the least radius of the cam is 50mm. The follower is provided with a roller of 50mm diameter and the line of stroke passes through the axis of the cam.

14M

5

5

L6

		Hall Ticket Number :	R-19		
	С	ode: 19AC34T			
		II B.Tech. I Semester Regular Examinations March 2021 Life Sciences for Engineers			
		(Common to CE, ME & CSE)			
		1ax. Marks: 70 Tir	ne: 3 Ho		
	A	Answer any five full questions by choosing one question from each unit (5 x 14	l = 70 Ma	arks)	
			Marks	со	Bloor
		UNIT–I			Leve
	a)	What is meant by classification and explain about living organisms based on the	ir		
•	u)	cellular life.	7M	1	
	b)	Differentiate between prokaryotes and eukaryotes.	7M	1	
	·	OR			
2.	a)	What is molecular taxonomy and how the organisms classify?	7M	1	
	b)	Explain about biological organisms comparing with manmade systems.	7M	1	
		UNIT–II			
3.		Explain the structure and functions of proteins.	14M	2	
		OR			
ŀ.	a)	Describe briefly about antibodies.	7M	2	
	b)	Explain the process of fermentation and its industrial applications.	7M	2	
-		UNIT-III	4 4 1 4	0	
5.		Explain the reactions that occur in glycolysis.	14M	3	
S.	a)	OR What is synapse and describe about neuromuscular junctions?	7M	3	
	a) b)	Explain about electron transport system.	7M	3	
	D)		7 101	5	
		UNIT-IV			
.	a)	What are the characteristics of Mendal's laws and explain with suitable examples?	7M	4	
	b)	Write the differences between mitosis and meiosis?	7M	4	
	·	OR			
3.	a)	Describe briefly about eukaryotic DNA replication.	7M	4	
	b)	Briefly explain about central dogma of molecular biology.	7M	4	
		UNIT–V			
).		Describe briefly about recombinant vaccines.	14M	5	
		OR			
).	a)	Write short notes on transgenic microbes.	7M	5	
	b)	Explain the salient features of animal cloning.	7M	5	

	Hall Ticket Number :													_
	Code: 19A331T											R-	19	
	II B.Tecl	л. I S	eme	este	r Reg	gulc	ır Ex	ami	nati	ons Ma	arch 20	021		
				Me	echo	anic	s o	f Sol	ids					
			(Me	char	nical	Eng	jinee	ering)		- •	<u></u>	
	Max. Marks: 70 Answer all five un	its by	cho	osing	g one		estio ****	n fror	n ec	ach unit	(5×14	Time: = 70 Mai		irs
												Marks	со	Blooms Level
					UNI	[_]								
1. a) A composite bar of b temperature of the cor force developed in the of aluminium bar. The aluminium bar is 1,60 a = 23 × 10–6 /°C.	nposi [;] bars area	te ba after of c	r is ra the i ross-	aised rise o secti	by 1 f tem on of	00°C pera bror	: Det ture a nze b	ermii and tl ar is	ne the co ne chang 1,300 m	ompress ge in len nm2 and	ive gth I of		
		5 mm												
		•	360	B	.	450			; ; ;					
		Bro 1 = 130	nze 00 mn	n²			iminii. 1600 i							
												10M	CO1	L3
b) A 40-mm cubical bloc 240 N/mm ² . If shear resilience, (ii) the she absorbed at elastic lim	modu ear st	ulus (G =	84 k	N/mr	m², d	letern	nine	(i) the r	nodulus	of rgy	CO1	L2
					OR								001	LZ
2. a) Draw stress-strain cur about the salient point			luctile	e mai	terial	subj	ectec	l to t	ension a	and expl		CO1	L3
b	A tension test is cond 10 mm.The bar during may be applied onthe the following paramete the point of failure;(iv) reduced to 5 mm;(v) area.	g the bar b ers.(i) Actua	test out it y Yield al stre	elong yield d stro ength	gates s at 3 ength n at th	to 8 35 kN ; (ii) ne pc	0 mr I and Ultim pint o	n.A r final nate s f failu	naxir ly bre strene ire w	num loa eaks at 4 gth; (iii) \$ hen the	d of 80 10 kN. F Strength diamete	kN ind at r is in	CO1	L3
					UNIT	-11							001	20
3.	A simply supported be two-point loads as sho Moment diagrams for	wn in the l	the f	gth 7 ollow	m, ca ving F	rries Fig. D	raw	the S	hear	Force an	nd Bend	ing		

10 kN/m 5 kN/m A ______B 4 ______B 4 ______B 4 ______B

maximum bending moment.

14M CO2 L3

OR

4. A 7-m-long cantilever is free at end A and fixed at end B carries three loads as shown in Fig. Determine support reaction and draw SF diagram and BM diagram of the cantilever.

- 5. Derive the expression for Shear Stress Distribution in a Rectangular Section of a Beam.
 - OR
- A beam is of circular sections of diameter D mm. At a particular section of the beam, shear force is 10 kN. Determine the diameter D if the maximum shear stress at neutral layer is not to exceed 15 N/mm².
 - b) A T-section with dimensions, flange 120 mm × 20 mm and web 180 mm × 12 mm, is shown in Fig. It is subjected to a positive bending moment of 5 kN m. What are the stresses developed at extreme edges of the section?

- 7. A beam, 7 m long, carries a uniformly distributed load of 20 kN/m, run throughout its length. The beam is supported over a span of 5 m with overhang of 2 m on one side. Determine the slope and deflection at the free end. If E = 200 GPa and $I = 802 \times 10^4$ mm⁴.
 - OR
- 8. A beam ABCD, 7 m long hinged at A and roller supported at D carries 7 kN load at B and 4 kN/m udl over BC = 3 m. If EI = 14,000 kN m² for the beam, determine the slope at A and deflection at point C.

UNIT-V

- 9. a) A thin cylindrical shell made of 5-mm-thick steel plate is filled with water under pressure of 3 N/mm². The internal diameter of the cylinder is 200 mm and its length is 1.0 m. Determine the additional volume of the water pumped inside the cylinder to develop the required pressure. Given for steel E = 208 kN/mm² and μ = 0.3, and for water K = 2,200 N/mm².
 - b) Derive the expression for circumferential and volumetric strain for thin Cylinder Subjected to Internal Pressure p.

OR

- 10. a) Evaluate the length of a cast iron column of 80 mm in diameter, the Euler's theory is applicable, if $_{c} = 550 \text{ N/mm}^2$ for CI and E = 102 kN/mm², the column is hinged at both the ends
 - b) Derive Lami's equation for thick cylinders subjected to internal and external pressures.

14M CO2 L3

14M CO3 L3

7M CO3 L3

7M CO3 L3

14M CO4 L3

14M CO4 L3

141VI CO4 L3

CO5

CO5

L3

L4

L4

7M

7M

7M

7M CO5 L3

CO5

ſ	Ha	Il Ticket Number :		
L	Cor	de: 19A332T	R-19	
		II B.Tech. I Semester Regular Examinations March 2021		
		Metallurgy & Material Science		
		(Mechanical Engineering)		
		x. Marks: 70 nswer any five full questions by choosing one question from each unit (5 x 14 = ********	me: 3 Hou = 70 Marks)	
			Marks CO	Blooms Level
		UNIT-I		Lover
1.	a)	Classify bonds and explain any two types of bonds.	7M	L3
	b)	Explain in brief the crystallization of pure metals.	7M	L2
		OR		
2.		Classify imperfections in solids and explain them with the help of neat diagrams.	14M	L3
		UNIT–II		
3.	,	Draw Fe-Fe ₃ C phase diagram and label the phase in it.	7M	L4
	b)	List out various reactions that occur in iron - iron carbide phase diagram and explain them with temperatures and compositions.	7M	L1
		OR	7 111	
4	a)	Explain the phase rule and its importance in phase diagrams	7M	L2
	b)	Explain in detail the relationship between equilibrium diagrams and properties		
		of alloys	7M	L2
		UNIT–III		
5.	a)	Explain the microstructure, properties, and applications of White Cast iron,		
	ĿХ	Malleable Cast iron.	7M	L2
	b)	Classify plain carbon steels and give a brief note on various types of plain carbon steels.	7M	L2
		OR		
6.		Explain various types of tool and die steels and their properties and applications	14M	L2
		UNIT-IV		
7.	a)	Define heat treatment. Explain various heat treatment parameters and heat		
		treatment cycle.	7M	L1
	b)	Explain at least 3 types of annealing processes with the help of a heat		
		treatment cycle.	7M	L2
0	-)	OR	714	
8.	a) b)	Explain in detail the effect of alloying elements on Iron – Iron carbon system,	7M 7M	L2
	b)	Explain the procedure to construct TTT diagram for an eutectoid steel.	7M	L2
9.	a)	Explain the properties and applications of cermets.	7M	L2
	b)	Explain any two methods of component manufacture of composites.	7M	L2
	,	OR		
10.	a)	Explain in brief the properties and applications of carbon-carbon composites		
		and metal matrix composites.	7M	L2
	b)	Discuss various steps involved in powder metallurgy process.	7M	L2

	L	Hall Ticket Number :			
			R-1	9	7
	C	Lode: 19AC31T II B.Tech. I Semester Regular Examinations March 2021		-	
		Partial Differential Equations and Complex Variable	S		
		(Common to CE, EEE, ME & ECE)			
	N	T Answer all five units by choosing one question from each unit (5 x 14 = 7(********	ime: 3) Mark		S
			Marks	со	Blooms Level
		UNIT-I			Lover
1.	a)	Find the Laplace Transform of $f(t) = \begin{cases} \cos t , 0 < t < f \\ \sin t, t > f \end{cases}$			
			7M	CO1	L1
	b)	Find $L\left(\frac{\cos 2t - \cos 3t}{t}\right)$	714	CO1	L1
		OR	7 111	COI	LI
2.	a)	Find the Laplace transform of $e^{4t}(\sin 2t \cos t)$	7M	CO1	L1
	b)	Find the Laplace transform of $f(t) = \begin{cases} 1 & 0 \le t < 1 \\ -1 & 1 \le t < 2 \end{cases}$ having period 2			
			7M	CO1	L1
		UNIT–II			
3.	a)	Find the inverse Laplace Transform of $\frac{1}{(s^2+1)s}$	7M	CO2	L1
			7 101	002	L 1
	b)	Apply Convolution theorem to evaluate $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$	7M	CO2	L3
		OR		002	20
4.		Solve $\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 2y = 5 \sin t$, if $y(0) = y'(0) = 0$			
		$dt^2 dt$ UNIT-III	14M	CO2	L3
5.		Expand $f(x) = x - x^2$ as Fourier series in the interval $(-f, f)$ and hence			
		obtain $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{f^2}{12}$	14M	CO3	L3
6.	a)	OR Find a Fourier series to represent $f(x) = x \sin x$, $-f < x < f$ and hence			
0.	ω,				
		deduce that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{4}(f - 2)$	7M	CO3	L1
	b)	Express $f(x) = x^2$ as half –range sine series in $0 < x < 4$	7M	CO3	L2
7.		UNIT-IV If a string of length ℓ is initially at rest in the equilibrium position and each of			
7.					
		its points is given, the velocity $V_0 \sin^3 \frac{fx}{\ell}$ find the displacement $y(x,t)$.	14M	CO4	L2
8.		OR An insulated rod of length has its ends A and B maintained at 0°C and 100°C			
		respectively until steady state condition prevails. If B is suddenly reduced to 0°C			
		and maintained at 0°C, Find the temperature at a distance x from A at time t . UNIT–V	14M	CO4	L3
9.		Show that the function $f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0 \end{cases}$ is not analytic at			
		origin, even though C-R equations are satisfied at origin. OR	14M	CO5	L2
10.	a)	Show that the function $v(x, y) = \sin x \cosh y + 2\cos x \sinh y + x^2 - y^2 + 4xy$			
	b)	satisfies Laplace equation and find the corresponding analytic function $u + iv$	7M	CO5	L1
	b)	Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ taken over the boundary of the square with vertices $1 \pm i$ and $-1 \pm i$	714	CO5	L4
		****	7 111	005	L4
			Pa	ge 1 of	1