\square
Code: 19A433T
II B.Tech. I Semester Regular Examinations March 2021
Digital Design
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain about even and odd parity check with an example, what is the drawback
b) Express the following numbers in decimal:(10110.0101) $)_{2},(16.5)_{16},(26.24)_{8}$.
7M 1 L2

OR

2. a) Perform subtraction with the following unsigned decimal numbers by taking 10 's complement of the subtrahend. Verify the result.
i. $5250-1321$
ii. 1753 - 8640
iii. $20-100$
iv. 1200-250
7M 2
L5
b) Convert the following to require form
i) $(163.789)_{10}=()_{8}$
ii) $(101101110001.00101)_{2}=()_{8}$
iii) $(292)_{16}=()_{2}$
iv) What is meant by self-complementing codes.

7M 2 L5

UNIT-II

3. a) Obtain the simplified expression in sum of products for the following Boolean function.
i) $F(A, B, C, D)=\Sigma(2,3,12,13,14,15)$.
ii) $B D E+B^{\prime} C^{\prime} D+C D E+A^{\prime} B^{\prime} C E+A^{\prime} B^{\prime} C+B^{\prime} C^{\prime} D^{\prime} E^{\prime}$
b) Implement the function $f(a, b, c)=\Pi(0,1,3,4)$ using NAND-NAND two level gate structure.

OR

4. a) Obtain the minimal sum of prgducts expression for the following function and implement the same using only NAND gates
$f A, B, C, D=\Sigma(1,4,7,8,9,11)+\Sigma d(0,3,5)$
7M 2 L5
b) Obtain minima ${ }^{\Sigma}$ ('OS expression for the given Boolean function
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})={ }_{\Sigma}^{\text {al }} \mathrm{P}(\mathrm{C}, 1,2,3,4,8,9,12)$ And draw the circuits with two Level NOR-
NOR form anc AND - OR form.

UNIT-III

5. a) Realize a full subtractor using decoder.
b) Draw the logic diagram of 2:4 Decoder with an ENABLE input using: i) NAND gates ii) AND gates. Show that the realization using NAND gates is more convenient to distinguish the selected output with a value of 0 .

OR

6. a) Tabulate the truth table for $8 * 4 \mathrm{ROM}$ to input the following functions:
$A=\Sigma(1,2,4,6) \quad B=\Sigma(0,1,6,7) \quad C=\Sigma(2,6) \quad D=\Sigma(1,2,3,5,7)$
7M 1 L2
b) Design a 4 bit BCD adder using Full adder circuits
7M 3 L6

UNIT-IV

7. a) Design and explain Johnson counter.
b) Design mod-10 synchronous counter using D-FlipFlops.

$6 M$	3	$L 6$
$8 M$	1	$L 2$

OR
8. a) Write the differences between asynchronous and synchronous sequential circuits.
b) Give the implementation procedure for a SR Latch using NOR gates.
7M 2 L5

UNIT-V

9. a) Discuss Moore Machine models of sequential circuits.

7M 2 L5
b) What are the capabilities and limitations of finite state machines? Explain.

7M 4 L2
OR
10. a) Reduce the number of states in the following state table and tabulate the reduced state table.

PS	NS, O/P	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
a	f, 0	b, 0
b	d, 0	c, 0
c	f, 0	e, 0
d	g, 1	a, 0
e	d, 0	c, 0
f	f, 1	b, 1
g	g, 0	h, 1
h	g, 1	a, 0

b) Obtain the state table and state diagram for a sequence detector to recognize the occurrence of sequence bits $110 \& 001$.

Code: 19A237T

II B.Tech. I Semester Regular Examinations March 2021
Electrical Circuits and Technology
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Derive the expression for star and delta transformation

7M CO1
b) Find current (I) flowing through the 4 ohm resistor using nodal analysis

OR
2. a) Calculate the equivalent resistance $R_{a b}$ in the below circuit

b) Explain the step response of an RL circuit using differential approach for DC excitation.

7M CO1
-
7M CO1

UNIT-II

3. a) Determine the Average value \& RMS value, peak factor and form factor of the below waveform.

b) Explain the importance of sinusoidal waveforms and list out the Advantages of AC supply.

7 M CO 2

OR

4. a) Define the following terms:
i) Resonant frequency
ii) Band Width iii) Quality factor
6 M CO 2
b) Explain the parallel resonance of RLC circuit with suitable wave form and equations.

UNIT-III

5. a) Derive the condition of reciprocity and symmetry for y-parameters

7M CO3 L1
b) Find the impedance-parameter equivalent of the circuit.

6. a) Find the relationship between impedance parameters and h -parameters.
$7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$
b) The Z parameters are $\mathrm{Z} 11=4, \mathrm{Z} 12=6, \mathrm{Z} 21=3, \mathrm{Z} 22=8$, find A.B.C,D parameters. $7 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 3$

UNIT-IV

7. a) Explain the constructional features and operation of a DC generator with diagram.

10M CO4 L3
b) Draw magnetization characteristics and application of DC generator.

4 M CO4 L1

OR

8. a) Derive an expression for torque developed in the armature of DC motor.

7M CO4
b) Derive the EMF equation of DC generator

7 M CO

UNIT-V

9. a) Explain how efficiency of a static machine can be predetermined by suggesting suitable method.

7M CO5 L3
b) Derive the EMF equation of a transformer
$7 \mathrm{M} \mathrm{CO5}$
OR
10. a) Discuss about the slip torque characteristics of a three phase induction motor.

7M CO5
b) Explain the brake test on three phase induction motor.
$7 \mathrm{M} \mathrm{CO5}$

II B.Tech. I Semester Regular Examinations March 2021
Electronic Circuits
(Electronics and Communication Engineering)

Max. Marks: 70
 Time: 3 Hours
 Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

${ }^{\text {UNIT-I }}$

1. a) List out the different coupling schemes in amplifiers and explain them. $10 \mathrm{M} \quad \mathrm{CO}$
b) State and prove Miller's and dual of Miller's theorem.

OR

2. a) Draw and explain small signal equivalent of BJT common emitter circuit.

7M CO1
b) Give analysis about CB and CC configuration in terms of h - parameters using simplified model.

UNIT-II

3. a) Draw the circuit diagram and equivalent circuit for current shunt feedback amplifier and derive the expression for total voltage gain
b) What are the different characteristics of negative feedback amplifiers? Discuss in brief

OR
4. a) Draw the block diagrams of the four possible feedback topologies and explain.
b) Prove that the bandwidth of the amplifier increases with negative feedback.

UNIT-III

5. a) Explain working of Hartley oscillator. Derive an Expression for frequency of oscillation and condition for oscillation

OR

6. a) Draw circuit diagram of RC phase shift oscillator and explain its operation by deriving expression for frequency of oscillation.

UNIT-IV

7. a) Explain the working of Series fed, directly coupled Class-A power amplifier with the help of a neat circuit diagram.
b) Give the expression for dc power input, ac power output and its efficiency of directly coupled Class-A amplifier?

7M CO3

OR

8. a) Explain the push-pull Class-B power amplifier with neat sketches of load line.
b) Mention some of the important applications of Class-B amplifier.

UNIT-V

9. a) Explain the operation of high pass RC circuits for a square wave input with the circuit diagram and waveforms.

7M CO4
b) Derive the expression for high pass RC circuit with Ramp input.

OR

10. a) Design any three different positive and negative clipper circuits with and without biasing and also draw the corresponding input and output waveforms and transfer characteristics
b) State and prove Clamping circuit theorem.

Code: 19AC31T
II B.Tech. I Semester Regular Examinations March 2021
Partial Differential Equations and Complex Variables
(Common to CE, EEE, ME \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I
$\left\{\begin{array}{cc}\cos t, & 0<t<\pi \\ \sin t, & t>\pi\end{array}\right.$

Marks CO | Blooms |
| :---: |
| Level |

1. a) Find the Laplace Transform of $f(t)=\left\{\begin{array}{c}\cos t, 0<t<\pi \\ \sin t, \quad t>\pi\end{array}\right.$

7M CO1 L1
b) Find $L\left(\frac{\cos 2 t-\cos 3 t}{t}\right)$

OR

2. a) Find the Laplace transform of $e^{4 t}(\sin 2 t \cos t)$

7M CO1
b) Find the Laplace transform of $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t<1 \\ -1, & 1 \leq t<2\end{array}\right.$ having period 2

UNIT-II
7M CO1
L1
3. a) Find the inverse Laplace Transform of $\frac{1}{\left(s^{2}+1\right) s}$

7M CO2
L1

7M CO2

OR
4. Solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=5 \sin t$, if $y(0)=y^{\prime}(0)=0$

UNIT-III

5. Expand $f(x)=x-x^{2}$ as Fourier series in the interval $(-\pi, \pi)$ and hence obtain $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12}$ 14M CO3

OR

6. a) Find a Fourier series to represent $f(x)=x \sin x, \quad-\pi<x<\pi$ and hence deduce that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\ldots .=\frac{1}{4}(\pi-2)$
b) Express $f(x)=x^{2}$ as half -range sine series in $0<x<4$

7M CO3

UNIT-IV

7. If a string of length ℓ is initially at rest in the equilibrium position and each of its points is given, the velocity $V_{0} \sin ^{3} \frac{\pi x}{\ell}$ find the displacement $y(x, t)$.
8. An insulated rod of length ℓ has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state condition prevails. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, Find the temperature at a distance x from A at time t.
$7 \mathrm{M} \quad \mathrm{CO} 3$

UNIT-V

9. Show that the function $f(z)=\left\{\begin{array}{c}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, \text { if } z \neq 0 \\ 0 \quad, \text { if } z=0\end{array}\right.$ is not analytic at origin, even though $C-R$ equations are satisfied at origin.

OR

10. a) Show that the function $v(x, y)=\sin x \cosh y+2 \cos x \sinh y+x^{2}-y^{2}+4 x y$ satisfies Laplace equation and find the corresponding analytic function $u+i v$
b) Verify Cauchy's theorem for the function $f(z)=3 z^{2}+i z-4$ taken over the boundary of the square with vertices $1 \pm i$ and $-1 \pm i$

Code: 19A432T

|| B.Tech. I Semester Regular Examinations March 2021
Random Variables Theory
(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Write short notes on the following:
i. Sample Space
ii. Experiments
iii. Joint Probability

7M CO1
L2
b) An experiment consists of observing the sum of the numbers showing up when two dice are thrown. If only three events are of interest represented by $A=\{$ sum $=7\}, B=\{8<$ sum $<=11\}$ and $C=\{10<$ sum $\}$. Calculate the probabilities of the events by developing the model for the given experiment.

7M CO1
L2

OR

2. a) Define and explain the following with an example:
i. Equally likely events
ii. Exhaustive events
iii. Mutually exclusive events

7M CO1 L2
b) State and prove Bayes' theorem.
7M CO1 L2

UNIT-II

3. a) For real constants $b>0, c>0$ and any a , find condition on constant a and relationship between a and c (for given b) such that the function is a valid probability density
$f x(x)= \begin{cases}a(1-(x / b)) & 0 \leq x \leq c \\ 0 & \text { else where }\end{cases}$
$7 \mathrm{M} \quad \mathrm{CO} 2$
L2
b) State and prove the properties of probability distribution function (PDF) of a random variable x.

OR

4. a) Assume that the height of the clouds above the ground at some location is a Guassian Random variable X with $a x=1830 \mathrm{~m}$ and $\sigma_{x}=460 \mathrm{~m}$. Find the probability that clouds will be higher than 2750 m .
b) Explain the Gaussian random variable.

UNIT-III

5. a) Find the mean \& variance of Exponential random variable.
b) A random variable X has pdf $f_{x}(x)=(1 / b) e^{-(x-a) / b}$. Find its moment generating function and use it to generate first order moment about origin.

7M CO2 L2

7 M	CO 2	L 2
7 M	CO 2	12

OR

6. a) Write a short note on Chebychev's inequality.
b) Show that $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$

UNIT-IV

7. a) State and explain the properties of joint density function
b) State and explain joint characteristic function.

OR

8. a) State and prove the central limit theorem.
b) If X and Y are independent, show that $E[X Y]=E[X] E[Y]$.

UNIT-V

9. a) State and prove the properties of auto-correlation function.
b) A random process is given as $\mathrm{X}(\mathrm{t})=\mathrm{ACos}\left(\omega_{0} t+\theta\right)$ where θ is a uniformly distributed random variable on $\left(0, \frac{\pi}{2}\right)$. Find whether $X(t)$ is wide sense stationary or not.

OR

10. a) State some useful classifications of Random Processes.
b) Autocorrelation function of an ergodic stationary random process with no periodic component is given as $25+4 /\left(1+6 T^{2}\right)$. Find the mean and variance of the process.

7M CO5 L3
7M \quad CO5 L2

7M \quad CO5 \quad L4

Code: 19A434T

II B.Tech. I Semester Regular Examinations March 2021
Signals and Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Draw the signal $x(t)= \begin{cases}1 & ; 0<t<1 \\ 2 & ; 1<t<2 \\ 0 & ; \text { elsewhere }\end{cases}$
and Determine \quad i) $x(2 \mathrm{t}) \quad$ ii) $x(3 \mathrm{t}-1) \quad$ iii) $x(\mathrm{t} / 2)$
8M $1 \quad$ L3
b) List out the classification of signals. Explain with an example of any two

6M 1 L1
OR
2. a) What are the conditions for existence of Fourier series? Define Gibbs phenomenon with neat sketch and explain how would you eliminate it?

6M 1 L1
b) Find the exponential Fourier series and plot the frequency spectrum for full wave rectified sine wave shown

8M 2
3. a) Find the Fourier Transform of the signal $x(t)=\left\{\begin{array}{l}1 ; 1<t<2 \\ 2 ; 2<t<3 \\ 1 ; 3<t<4\end{array}\right.$
b) State and prove the duality property of Fourier Transform

7M 2
L4
7M 1 L2

OR

4. a) Determine the inverse Fourier Transform for the signal $X(j \omega)=\frac{2}{1+t^{2}}$ Using Duality Property of the Fourier Transform
b) Determine the Fourier Transform of the following periodic signal

UNIT-III

5. a) What are the characteristics of ideal LPF and HPF
$6 \mathrm{M} \quad 1$
b) The response of a continuous time LTI system is $2 e^{-3 t}$ when the input $x(t)$ is $u(t)$ find the Transfer function
$8 \mathrm{M} \quad 3$

OR

6. a) What is the different classification of Sampling? Explain each with neat sketch.
b) What is mean by aliasing? How would you eliminate it? Explain. 1

UNIT-IV

7. a) State the condition for Stability of any system and derive an expression for same.

6M 2 L3
b) Find the convolution of the following signals
i) $\quad x_{1}(t)=e^{-3 t} u(t) \quad$ and $\quad x_{2}(t)=u(t+3)$
ii) $\quad x_{1}(t)=e^{-a t} u(t) x_{2}(t)=e^{-b t} u(t)$

8 M 3
L4

OR

8. a) State and prove the relation between auto correlation function and energy / power spectral density function

7M 2
L2
b) Write the properties of cross Correlation for periodic signal

7M L1

UNIT-V

9. a) Explain the Linearity and time shifting properties of Laplace transform.
$7 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$
b) Find the Laplace transform of $\mathrm{t} u(\mathrm{t})$. List properties of ROC for Laplace transforms
$7 \mathrm{M} \quad 5 \quad$ L4

OR

10. a) Find the Z-transform of the given signal $x(n)$ and find ROC: $X(n)=\left[\sin \left(w_{0} n\right] u(n) \quad 7 M \quad 5 \quad L 3\right.$
b) Find the inverse Z - transform of $X(z)=\frac{1+3 z^{-1}}{1+3 z^{-1}+2 z^{-2}}$

7M 4

