	ŀ	Hall Ticket Number :			٦
	<u> </u>	ode: 19A433T	R-19		
		II B.Tech. I Semester Regular Examinations March 2021			-
		Digital Design			
		(Electronics and Communication Engineering)			
	Mo	ax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 N *********	ne: 3 H Aarks)	ours	i
			Marks	со	Blooms Level
		UNIT–I			
1.	a)	Explain about even and odd parity check with an example, what is the drawback	7M	1	L2
	b)	Express the following numbers in decimal: $(10110.0101)_2$, $(16.5)_{16}$, $(26.24)_8$.	7M	1	L2
		OR			
2.	a)	Perform subtraction with the following unsigned decimal numbers by taking 10's			
		complement of the subtrahend. Verify the result. i. 5250 – 1321 ii. 1753 – 8640 iii. 20 – 100 iv. 1200 - 250	7M	2	L5
	b)	Convert the following to require form	7 101	2	LU
	,	i) $(163.789)_{10} = ()_8$ ii) $(101101110001.00101)_2 = ()_8$			
		iii) $(292)_{16} = ()_2$ iv) What is meant by self-complementing codes.	7M	2	L5
		UNIT–II			
3.	a)	Obtain the simplified expression in sum of products for the following Boolean function.			
		i) $F(A,B,C,D) = (2,3,12,13,14,15).$			
		ii) BDE+BCD+CDE+ABCE+ABC+BCDE	7M	1	L2
	b)	Implement the function $f(a,b,c)=(0,1,3,4)$ using NAND-NAND two level gate structure.	7M	2	L5
		OR	7 101	2	LU
4.	a)	Obtain the minimal sum of products expression for the following function and			
	,	implement the same using only NAND gates			
		$f A, B, C, D = \Sigma (1, 4, 7, 8, 9, 11) + \frac{\Sigma d(0, 3, 5)}{\text{for the } c}$	7M	2	L5
	b)	Obtain minim \mathcal{E} (DS expression for the given Boolean function			
		f (A,B,C,D) = $\frac{al}{\Sigma} \frac{P}{C}$, 1, 2, 3, 4, 8, 9, 12) And draw the circuits with two Level NOR-NOR form and AND - OR form.	7M		
			7 101		
5.	a)	Realize a full subtractor using decoder.	7M	4	L2
	b)	Draw the logic diagram of 2:4 Decoder with an ENABLE input using: i) NAND gates			
		ii) AND gates. Show that the realization using NAND gates is more convenient to			
		distinguish the selected output with a value of 0.	7M	2	L5
0	c)	OR Tobulate the truth table for 9*4 DOM to input the following functional			
ю.	a)	Tabulate the truth table for 8*4 ROM to input the following functions: A= $(1,2,4,6)$ B= $(0,1,6,7)$ c= $(2,6)$ D= $(1,2,3,5,7)$	7M	1	L2
	b)	Design a 4 bit BCD adder using Full adder circuits	7M	3	L2 L6
	~)		7 191	0	20

7M

3

L6

L5

7.	a)	Design and explain Johnson counter.	6M	3	L6
	b)	Design mod-10 synchronous counter using D-FlipFlops.	8M	1	L2
		OR			
8.	a)	Write the differences between asynchronous and synchronous sequential circuits.	7M	2	L5
	b)	Give the implementation procedure for a SR Latch using NOR gates.	7M	2	L5
		UNIT-V			
9.	a)	Discuss Moore Machine models of sequential circuits.	7M	2	L5
	b)	What are the capabilities and limitations of finite state machines? Explain.	7M	4	L2
		OR			

10. a) Reduce the number of states in the following state table and tabulate the reduced state table.

PS	NS, O/P						
	X=0	X=1					
а	f, 0	b, 0					
b	d, 0	c, 0					
С	f, 0	e, 0					
d	g, 1	a, 0					
е	d, 0	c, 0					
f	f, 1	b, 1					
g	g, 0	h, 1					
h	g, 1	a, 0					

b) Obtain the state table and state diagram for a sequence detector to recognize the occurrence of sequence bits 110 & 001.
 7M 2

	Hall Ticket Number :													
	Code: 19A237T											R-	19	
	I B.Tech	n.∣S∈	emeste	er Re	gulo	ar Ex	ami	nati	ons	Ma	rch 20	21		
			ctrica											
	(El Max. Marks: 70 Answer all five uni		onics a choosir		e qu				-				3 Hou rks)	ırs
				INUT								Marks	со	Blooms Level
1. a)	Derive the expression fo	or star		JNIT- ta trar		natio	n					7M	CO1	L1
b)	•		h the 4 c					dal a	analy	sis				
		(†) 5A + 20	20 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6Q Ş			4Ω							
												7M	CO1	L2
2. a)	Calculate the equivalent	rocie	tanco P	OR	na hal		rcuit							
,	$a \circ - \frac{R_{ab}}{b}$	10 Ω 		1Ω Ω 2Ω	d	1Ω	2 /	≩ 5 Ω				7M	CO1	L1
b)	Explain the step respor	nse o	f an RL	circu	uit us	ing d	liffere	ntial	app	roach	n for D			
	excitation.											7M	CO1	L3
3. a)	Determine the Average below waveform.	value		JNIT- 6 valu		eak fa	actor	and	form	fact	or of th	e		
	2 0 -1		2_4	6	8	4) 10 <i>t</i>							
												7M	CO2	L2
b)	Explain the importance of Advantages of AC suppl		usoidal v	vavefo OR	orms	and I	ist ou	t the				7M	CO2	L3
4. a)	U												• -	
۲.	 i) Resonant frequency ii) Explain the parallel reson 				-			vo fo	rm or	nd ear	uations	6M 8M	CO2 CO2	L3 L2
b)		ance		ncult	with S	uitaD	e wa	ve 101	ini al	iu eq	uauuns.		002 Page 1 o	
												F	age I U	. 2

Code: 19A237T

		UNIT–III			
5.	a)	Derive the condition of reciprocity and symmetry for y-parameters	7M	CO3	L1
	b)	Find the impedance-parameter equivalent of the circuit.			
		$1\Omega \overset{+}{\underset{-}{}} v_x \overset{\geq}{\underset{-}{}} 2v_x$			
			7M	CO3	L2
		OR	7 101	000	LZ
6.	a)	Find the relationship between impedance parameters and h-parameters.	7M	CO3	L2
	b)	The Z parameters are Z11=4 , Z12 =6, Z21=3, Z22=8, find A.B.C,D parameters.	7M	CO3	L3
		UNIT–IV			
7.	a)	Explain the constructional features and operation of a DC generator with			
		diagram.	10M	CO4	L3
	b)	Draw magnetization characteristics and application of DC generator.	4M	CO4	L1
		OR			
8.	a)	Derive an expression for torque developed in the armature of DC motor.	7M	CO4	L3
	b)	Derive the EMF equation of DC generator	7M	CO4	L2
		UNIT–V			
9.	a)	Explain how efficiency of a static machine can be predetermined by suggesting			
		suitable method.	7M	CO5	L3
	b)	Derive the EMF equation of a transformer	7M	CO5	L2
		OR			
10.	a)	Discuss about the slip torque characteristics of a three phase induction motor.	7M	CO5	L3
	b)	Explain the brake test on three phase induction motor.	7M	CO5	L1

	I	Hall Ticket Number :														_
												R-19				
	C	Code: 19A431T	ISeme	oste	r Ro	aulc	ır Fx	am	vinati	ons	Ma	ch 2	021			_
II B.Tech. I Semester Regular Examinations March 2021 Electronic Circuits																
		(Ele	ctronic			-		-		ngin	eerir	ng)				
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)									5							
														Marks	со	Blooms Level
4		list out the different pour			UNI		:::		امدماه	ماد ما				1014		14
1.	a) b)	List out the different cou				•			i expia	uriuri	em.			10M 4M	CO1	L1 L2
	b)	State and prove Miller's	and dua		olline Ol		oren	1.						411	CO1	LZ
2.	a) b)	Draw and explain small Give analysis about CE	-		alent	of BJ							isina	7M	CO1	L3
	0)	simplified model.			//ingc	natio		lonn	13 01	i pe			Joing	7M	CO1	L1
					UNI	[
3.	a)	Draw the circuit diagr	am and	d eq	uivale	ent c	ircuit	for	curr	ent s	shunt	feed	back			
		amplifier and derive the	•				•	•						7M	CO1	L3
	b)	What are the different chara	acteristics	of ne	-		back a	mpli	ifiers? I	Discu	ss in t	orief		7M	CO2	L1
4.	2)	Draw the block diagram	s of tho	four	O		odbr	ock i	tonolo	aios	and	volair		7M	CO2	L3
4.	a) b)	Prove that the bandwidt							•	•		•		7M	CO2	L5 L5
	0)				UNIT		1303	vvitii	nega		eeub	ack.		7 111	002	LJ
5.	a)	Explain working of Ha	rtlev os	I			an	Ex	oressi	on fo	or fre	auena	v of			
0.	.,	oscillation and condition	-					— · · r				90.01.0	.j C.	7M	CO2	L1
	b)	Classify the different os	cillators	and	draw	their	diagi	am	S.					7M	CO2	L6
					O											
6.	a)	Draw circuit diagram of	•					and	d exp	ain i	ts op	eratio	n by			1.2
	L)	deriving expression for f	•	•		ation	•							10M	CO2	L3
	b)	Describe operation of cr	ystal os	i		• 11/								4M	CO3	L2
7.	a)	Explain the working of	Series f		UNIT		Inled	Cla	Δ-22G	റഡം	r an	nlifier	with			
7.	a)	the help of a neat circuit					upieu	Cic	199-4	powe		ipinei	vvitii	7M	CO3	L1
	b)	Give the expression fo	r dc po	wer	input	, ac	powe	er o	utput	and	its e	ficiend	cy of			
		directly coupled Class-A	amplifie	er?										7M	CO3	L1
0	-)	Evaluin the puck pull Cla			O				otoboo	ofic				4014		14
8.	a)	Explain the push-pull Cla			•						ad III	ie.		10M	CO3	L1
	b)	Mention some of the imp	portant a					5-В 8	ampiin	er.				4M	CO4	L3
9.	a)	Explain the operation o	f hiah n	I			s for	2 6	auara	W2V	o inn	ut with	h tha			
9.	a)	circuit diagram and wave	• ·	ass 1		ncun	5 101	a s	quare	wav	e inp			7M	CO4	L1
	b)	Derive the expression for		ss R(C circ	uit wi	th Ra	mpi	input.					7M	CO4	L2
	,	•			OI			•								
10.	a)	Design any three different	•			•										
		biasing and also draw th	ne corres	spon	ding	input	and	outp	out wa	vefor	ms a	nd trai	nsfer		66 i	10
	۲	characteristics	na oireui	it th a	orom									7M 7M	CO4	L3
	b)	State and prove Clampin	ng circu	it the	orem		**							7M	CO4	L1
														-		-

	L	Hall Ticket Number :			
			R-1	9	7
	C	Lode: 19AC31T II B.Tech. I Semester Regular Examinations March 2021		-	
		Partial Differential Equations and Complex Variable	S		
		(Common to CE, EEE, ME & ECE)			
	N	T Answer all five units by choosing one question from each unit (5 x 14 = 7(********	ime: 3) Mark		S
			Marks	со	Blooms Level
		UNIT-I			Lover
1.	a)	Find the Laplace Transform of $f(t) = \begin{cases} \cos t , 0 < t < f \\ \sin t, t > f \end{cases}$			
			7M	CO1	L1
	b)	Find $L\left(\frac{\cos 2t - \cos 3t}{t}\right)$	714	CO1	L1
		OR	7 111	COI	LI
2.	a)	Find the Laplace transform of $e^{4t}(\sin 2t \cos t)$	7M	CO1	L1
	b)	Find the Laplace transform of $f(t) = \begin{cases} 1 & 0 \le t < 1 \\ -1 & 1 \le t < 2 \end{cases}$ having period 2			
			7M	CO1	L1
		UNIT–II			
3.	a)	Find the inverse Laplace Transform of $\frac{1}{(s^2+1)s}$	7M	CO2	L1
			7 101	002	L 1
	b)	Apply Convolution theorem to evaluate $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$	7M	CO2	L3
		OR		002	20
4.		Solve $\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 2y = 5 \sin t$, if $y(0) = y'(0) = 0$			
		$dt^2 dt$ UNIT-III	14M	CO2	L3
5.		Expand $f(x) = x - x^2$ as Fourier series in the interval $(-f, f)$ and hence			
		obtain $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{f^2}{12}$	14M	CO3	L3
6.	a)	OR Find a Fourier series to represent $f(x) = x \sin x$, $-f < x < f$ and hence			
0.	ω,				
		deduce that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{4}(f - 2)$	7M	CO3	L1
	b)	Express $f(x) = x^2$ as half –range sine series in $0 < x < 4$	7M	CO3	L2
7.		UNIT-IV If a string of length ℓ is initially at rest in the equilibrium position and each of			
7.					
		its points is given, the velocity $V_0 \sin^3 \frac{fx}{\ell}$ find the displacement $y(x,t)$.	14M	CO4	L2
8.		OR An insulated rod of length has its ends A and B maintained at 0°C and 100°C			
		respectively until steady state condition prevails. If B is suddenly reduced to 0°C			
		and maintained at 0°C, Find the temperature at a distance x from A at time t . UNIT–V	14M	CO4	L3
9.		Show that the function $f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0 \end{cases}$ is not analytic at			
		origin, even though C-R equations are satisfied at origin. OR	14M	CO5	L2
10.	a)	Show that the function $v(x, y) = \sin x \cosh y + 2\cos x \sinh y + x^2 - y^2 + 4xy$			
	b)	satisfies Laplace equation and find the corresponding analytic function $u + iv$	7M	CO5	L1
	b)	Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ taken over the boundary of the square with vertices $1 \pm i$ and $-1 \pm i$	714	CO5	L4
		****	7 111	005	L4
			Pa	ge 1 of	1

	н	all Ticket Number :			
			R-1	9	
	Co	Dee: 19A432T II B.Tech. I Semester Regular Examinations March 202	 1		1
		Random Variables Theory	1		
		(Electronics and Communication Engineering)			
	Ν	Aax. Marks: 70 Answer any five full questions by choosing one question from each unit (5 x 1/ ********	Time: 4 = 70 <i>I</i>		
			Marks	со	Blooms Level
		UNIT–I			Level
1.	a)	Write short notes on the following:			
		i. Sample Space ii. Experiments			
		iii. Joint Probability	7M	CO1	L2
	b)	An experiment consists of observing the sum of the numbers showing up when two dice are thrown. If only three events are of interest represented by $A = {sum=7}, B = {8 < sum <= 11} and C = {10 < sum}.$ Calculate the probabilities of the events by developing the model for the given experiment.	7M	CO1	L2
2	a)	OR Define and explain the following with an example:			
Ζ.	a)	i. Equally likely events			
		ii. Exhaustive events		004	
	b)	iii. Mutually exclusive events State and prove Bayes' theorem.	7M 7M	CO1 CO1	L2 L2
	5)		7 101	001	LZ
3.	a)	For real constants b>0, c>0 and any a , find condition on constant a and relationship between a and c (for given b) such that the function is a valid probability density			
		$f_{x(x)} = \begin{cases} a(1 - (x/b)) & 0 \le x \le c \\ 0 & else \text{ where} \end{cases}$	7M	CO2	L2
	b)	State and prove the properties of probability distribution function (PDF) of a	7 1 1 1	002	LZ
	,	random variable x.	7M	CO2	L2
4.	a)	OR Assume that the height of the clouds above the ground at some location is a			
	.,	Guassian Random variable X with ax=1830m and x=460m. Find the			
	b)	probability that clouds will be higher than 2750m. Explain the Gaussian random variable.	7M 7M	CO2	L2
	b)		7M	CO2	L2
5.	a)	Find the mean & variance of Exponential random variable.	7M	CO3	L3
	b)	A random variable X has pdf $f_x(x) = (1/b)e^{-(x-a)/b}$. Find its moment			
		generating function and use it to generate first order moment about origin. OR	7M	CO3	L3
6.	a)	Write a short note on Chebychev's inequality.	7M	CO3	L3
	b)	Show that Var[aX] = a ² Var[X]	7M	CO3	L3
_		UNIT-IV			
7.	a) b)	State and explain the properties of joint density function	10M	CO4	L2
	b)	State and explain joint characteristic function. OR	4M	CO4	L3
8.	a)	State and prove the central limit theorem.	10M	CO4	L3
	b)	If X and Y are independent, show that E[XY]=E[X] E[Y].	4M	CO4	L3
	,	UNIT-V			
9.	a) b)	State and prove the properties of auto-correlation function. A random process is given as $X(t) = ACos(\omega_0 t + \theta)$ where θ is a uniformly	7M	CO5	L4
	0)	distributed random variable on $(0, \frac{\pi}{2})$. Find whether X(t) is wide sense			
		stationary or not.			
		OR	7M	CO5	L3
10.	a)	State some useful classifications of Random Processes.	7M	CO5	L2
	b)	Autocorrelation function of an ergodic stationary random process with no			_
		periodic component is given as 25+ 4/(1+6 ²). Find the mean and variance of the process.	7M	CO5	L4

	Н	all Ticket Number :			
	C	ode: 19A434T	R-19	9	
		II B.Tech. I Semester Regular Examinations March 2021			
		Signals and Systems			
		(Electronics and Communication Engineering)			
	M		me: 3		Jrs
		Answer all five units by choosing one question from each unit (5 x 14 = 70 ********	Marks	5)	
			Marks	со	Blooms
					Level
		$\bigcup \mathbf{UNIT} - \mathbf{I}$			
1	a)	Draw the signal $x(t) = \begin{cases} 1 & ; \ 0 < t < 1 \\ 2 & ; \ 1 < t < 2 \\ 0 & ; elsewhere \end{cases}$			
1.	a)	Draw the signal $x(t) = \begin{bmatrix} 2 & 1 \\ 0 & elsewhere \end{bmatrix}$			
		and Determine i) x(2t) ii) x(3t-1) iii) x(t/2)	8M	1	L3
	b)	List out the classification of signals. Explain with an example of any two	6M	1	L1
~	-)	OR			
Ζ.	a)	What are the conditions for existence of Fourier series? Define Gibbs phenomenon with neat sketch and explain how would you eliminate it?	6M	1	L1
	b)	Find the exponential Fourier series and plot the frequency spectrum for full			
		wave rectified sine wave shown			
		$\uparrow^{x(t)}$			
		-2π $-\pi$ 0 π 2π t	8M	2	L4
		UNIT–II			
		Find the Fourier Transform of the signal $x(t) = \begin{cases} 1 & ; 1 < t < 2 \\ 2 & ; 2 < t < 3 \\ 1 & ; 3 < t < 4 \end{cases}$			
3.	a)	Find the Fourier Transform of the signal $x(t) = \begin{cases} 2 \\ 2 \end{cases}$; $2 < t < 3$			
		(1; 3 < t < 4)	7M	2	L4
	b)	State and prove the duality property of Fourier Transform	7M	1	L2
		OR			
4.	a)	Determine the inverse Fourier Transform for the signal $X(j\tilde{S}) = \frac{2}{1+t^2}$ Using			
			714	0	10
	b)	Duality Property of the Fourier Transform	7M	2	L3
	b)	Determine the Fourier Transform of the following periodic signal $x(t)$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_
		2 2	7M	2	L2

		Cod	de: 19 A	4347	Г
		UNIT–III			
5.	a)	What are the characteristics of ideal LPF and HPF	6M	1	L1
	b)	The response of a continuous time LTI system is $2e^{-3t}$ when the input $x(t)$ is $u(t)$ find the Transfer function	8M	3	L4
		OR			
6.	a)	What is the different classification of Sampling? Explain each with neat sketch.	8M	1	L1
	b)	What is mean by aliasing? How would you eliminate it? Explain.		1	L2
		UNIT–IV			
7.	a)	State the condition for Stability of any system and derive an expression for		_	
		same.	6M	2	L3
	b)	Find the convolution of the following signals			
		i) $x_1(t) = e^{-3t}u(t)$ and $x_2(t) = u(t+3)$			
		ii) $x_1(t) = e^{-at}u(t) \ x_2(t) = e^{-bt}u(t)$	8M	3	L4
		OR			
8.	a)	State and prove the relation between auto correlation function and energy /			
		power spectral density function	7M	2	L2
	b)	Write the properties of cross Correlation for periodic signal	7M	4	L1
		UNIT–V			
9.	a)	Explain the Linearity and time shifting properties of Laplace transform.	7M	5	L2
	b)	Find the Laplace transform of t u (t). List properties of ROC for Laplace		_	
		transforms	7M	5	L4
		OR			
10.	a)	Find the Z-transform of the given signal $x(n)$ and find ROC: $X(n) = [sin(w_0n] u(n)$	7M	5	L3
	b)	Find the inverse Z- transform of $X(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}}$	7M	4	L4
