Hall Ticket Number :					D O	n	
Code: 20AC36T					R-2	0	
II B.Tech. I Semester						2023	
Manag	erial Economics Common 1			Anaiysi	5		
Max. Marks: 70	·	****	-,		Time: 3	Hours	
Note: 1. Question Paper c			Part-B)				
2. In Part-A, each qu							
3. Answer ALL the q		nd Part-B RT-A					
		ry question)					
1. Answer all the follo	wing short answe	er questior	ns (5	5 X 2 = ⁻	10M)	со	BL
a) Define managerial	economics.					CO1	L1
b) List the disadvantage	ges of breakeven	analysis.				CO2	L1
c) Write a short note c	on partnership bu	siness.				CO3	L1
d) Mention the advant	ages of payback	method.				CO4	L2
e) State the importance	e of liquidity ratio	DS.				CO5	L3
		<u> RT-В</u>					
Answer <i>five</i> questions	by choosing one qu	uestion fron	n each u	nit (5 x ′		-	-
	UNIT-	J			Marks	CO	B
Explain the natur			l econo	omics.	12M	CO1	L
	OR						-
. Explain the diffe	rent types of e	lasticitv o	f dem	and wit	h		
suitable example		, -				CO1	L
	UNIT–	II					
Explain various typ	es of internal eco	nomies of s	scale.		12M	CO2	L
	OR						
. From the followir	ng information re	elating to	ABC c	ompany	/,		
you are required			akeve	n point i	n		
units, margin of s		Given					
Total fixed costs-							
Total variable cos	·						
Total sales-Rs.25	5,000				4014		
Units sold-5,000					12IVI	CO2	I
What is meant by		1	rat? ⊑r	umorot			
-	y herreer comber			uneid	C		
ON DRICE OUTDUIT D	etermination in p	erfect con	npetitic	n	12M	CO3	L

Page **1** of **2**

			L L L L L L L L L L L L L L L L L L L	June. 20/	AC301	
			OR			
7.		Evaluate the n	nerits of sole proprietorship business.	12M	CO3	L1
8.		Discuss the va	rious methods of discounted cash flow			
		techniques.		12M	CO4	L4
			OR			
9.		A firm is consi	dering the following project			
			Cash flows in Rupees			
		C ₀ C				
		_	500 +11,969 +12,129 +13,735 +14,521			
			of the project, if the cost of capital is 12			
		percent		12M	CO4	L4
			UNIT–V			
10.	a)	Elaborate the	mportance of various accounting concepts.	6M	CO5	L1
	b)	Explain the im	portance of trail balance.	6M	CO5	L1
			OR			
11.		Journalize th				
		Kumar.				
		April 2005				
		1	Kumar commenced business with			
			Rs.15, 000.			
		2	Paid in to bank Rs.10, 000.			
		5	Purchased goods from B for Rs.5,000			
		9	Returned goods to B for Rs.2, 000.			
		14	Paid to B in full settlement of account			
			Rs.1,5000			
		18	Received interest from the bank			
			Rs.1750			
		21	Sold goods for cash Rs.7,000			
		25	Received goods worth Rs.500 from			
			Krishna with a complaint about damage.			
		26	Paid salaries Rs.400	12M	CO5	L3
			*** End ***.			

Code: 20AC36T

	Ha	II Ticket Number :														
	Cor	de: 20AC31T												R-20		
		B.Tech. I Seme	ster	Reg	ular	& Si	gqu	lem	ento	ary E	Exan	nina	itions	February 20)23	
		Partial		-	tial	Equ	atic	ons	and	Νυ	mei			-		
					(Co	omm	ion t	οC	Ean	d Ml	Ξ)					
	M	ax. Marks: 70					***	****	**					Time: 3 H	lours	
	Note	e: 1. Question Pap	er co	nsists	s of t	wo p	arts	(Par	t-A a	and I	Part-	B)				
		2. In Part-A, eac	-													
		3. Answer ALL	the o	questi	ions	in P a				t-B						
								RT-		• \						
				- u4			-	•	quest			~~~			~~	
		nswer all the follow	Ŭ						•			,		a_{i}	CO	BL
		Vrite the Newton-F Iso explain when N								iate	root	of tr	ie equ	ation $f(x)=0$.	CO1	L2
		ind the interpolatin			•					d (2,	4).				CO2	L2
				-					x_n		,					
	c) S	tate the Simpson's	1/3 ^{rc}	^d & 3/	8 th ru	le fo	r eva	luati	ng [f(x)dx	C			CO3	L1
									x_0							
	d) B	riefly explain the R	unge	-Kutt	a me	thod	of fo	ourth	orde	r.					CO4	L2
	e) W	/rite the all possible	e soli	utions	of 2	D-La	plac	e eq	uatior	า.					CO5	L3
	_					_	_	ART-		_		_				
	Α	Answer <i>fiv</i> e quest	ions	by cl	100S	sing o	one	ques	tion	from	eac	h un	it (5 x		-	
						UN	T_I							Marks	CO	BL
2	a)	Find the root of e	austi	on r	3 2			using	1 tha	hiso	ction	mot	hod co	rrect		
	α,	to three decimal p	•		- 2.	$\lambda - J$	-01	using	y une	0136	Clion	met		6M	CO1	L3
	b)	Find the fourth roo			orrect	t to fo	our d	lecim	nal pla	aces	by c	hoos	sing re			
		falsi method.												6M	CO1	L4
						C	DR									
3.	a)	Using Newton Ra	ohso	n met	hod,	find	a rea	al roc	ot of t	he e	quati	on				
		$x\sin x + \cos x = 0.$												6M	CO1	L3
	b)	Find a root of x^3 –	x-1	l = 0 b	y ch		-	eratio	n me	thod	•			6M	CO1	L4
	,						T–II									
4.	a)	Estimate the value		,			wollc	-	_	~						
		X 20 f(x) 354	25 332	29	0	35 260		40 231	4					6M	CO2	L3
	b)	The population of							_		ven l	belov	v. Esti		002	LJ
	2)	the population for					COIN	040	nuo t	uo gi		00101	. 200	nato		
		Year x	1921	19	31	194	1	1951	1	961						
		Population y	46	6	6	81		93	1	01				6M	CO2	L3
							DR									
5.	a)	From the following			imat	e the	num	nber	of stu	Ident	s wh	o ob	tained			
		marks between 40 Marks:		45. 30-40	Λ	0-50	50	-60	60-	70	70-8	20				
		No. of student		<u>30-40</u> 31		42	50		35		31			6M	CO2	L4
			·	-		-	-	-		t	-					

Code: 20AC31T

b) Using Lagrange's interpolation formula, calculate y(2) from the table 0 3 Х 4 6M CO2 L4 -12 0 12 24 У UNIT-III Given that 6. 1.3 х: 1.0 1.1 1.2 1.4 1.5 1.6 f(x): 7.989 8.403 8.781 9.129 9.451 9.750 10.031 Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.0 12M CO3 14 OR 7. a) Evaluate $\int_{-\infty}^{\frac{1}{2}} \sqrt{\cos t} d_{t}$ by dividing the integral into 6 parts using trapezoidal rule and Simpson's 1/3rd rule. 6M CO3 L3 b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ Using Simpson's 3/8th rule. 6M CO3 L3 UNIT-IV 8. a) Apply Euler's method to find y for x = 0.1for $\frac{dy}{dx} = x + y + xy$, y(0) = 1, taking step size 0.025. 6M CO4 L3 b) Given $\frac{dy}{dx} = x + y^2$, y(0) = 1, h = 0.2, Calculate y(0.2) using Runge Kutta method. 6M CO4 L4 OR 9. a) Find the value of y for x = 0.1, by Picard's method, given that $\frac{dy}{dx} = \frac{y-x}{y+x}, \ y(0) = 1.$ 6M CO4 L4 b) Solve by Taylor's series method the equation $\frac{dy}{dx} = \log(xy)$ for y(1.1), given y(1) = 2.6M CO4 L3 UNIT-V A string is stretched and fastened at two point / apart. Motion is started by 10. displacing the string in the form $y = a \sin\left(\frac{fx}{l}\right)$ from which it is released at displacement time t = 0. Show that the of the strina $y(x,t) = a \sin\left(\frac{fx}{l}\right) \cos\left(\frac{fct}{l}\right).$ 12M CO5 L2 OR 11. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is ; this end is maintained at a temperature u_0 at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state. 12M CO5 L4

*** End ***

	all Ticket Number :	R-20		
	de: 20A132T B.Tech. I Semester Regular & Supplementary Examinations Febru	arv 202	23	
	Strength of Materials	- / -	-	
	(Civil Engineering)			
1010	ax. Marks: 70 Tin	ne: 3 Ho	2012	
No	te: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)	、	~ ~	_
	Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$ ine resilience)	CO	E
	ine Shear force and bending moment		1 2	
	te down the formula to find the section modulus of rectangular sec	tion.	3	
	te Mohr's theorems		4	
Def	ine thin shells PART-B		5	
A	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$	60 Marks	5)	
		Marks	CO	E
2. a)	UNIT–I Deduce the relation between the Modulus of Elasticity and			
a)	Modulus of Rigidity from fundamentals	4M	1	
b)	The Modulus of rigidity for a material is 0.51x10 ⁵ N/mm ² . A			
	10mm diameter rod of the material was subjected to an axial			
	pull of 10 kN and the change in diameter was observed to be 3x10 ⁻³ mm. Calculate Poisson's ratio and the modulus of			
	elasticity	8M	1	
	OR			
8.	A mild steel bar 20 mm diameter and 400 mm long is enclosed			
	in a copper tube of 50 mm outside diameter and 25 mm inside diameter. The composite bar is heated through 50 ^{oC} . Determine			
	the stresses induced in each metal. Determine also the			
	extension of the composite bar. Hence calculate the axial thrust			
	P required to nullify the extension. The elastic modulus and			
	coefficient of thermal expansion for steel are 200 GPa and 11.7 \times 10 ⁻⁶ per °C respectively and for copper 70 GPa and			
	21.6×10^{-6} per °C respectively	12M	1	
	UNIT–II			
.	Determine the bending moment and shear force values for the			
	given beam and draw the BMD and SFD			
	20 kN/m			
	4m $4m$ $4m$ $1a$ $2m$	1014		

* 4

4

12M 2 4

12M

12M

12M

12M

12M

12M

3

3

4

4

5

5

4

3

2

4

3

4

OR

5. Determine the bending moment and shear force values for the given beam and draw the BMD and SFD

6. A cantilever beam, 50 mm wide by 150 mm high and 6 m long, carries a load that varies uniformly from zero at the free end to 1000 N/m at the wall: (i) Compute the magnitude and location of the maximum flexural stress. (ii) Determine the type and magnitude of the stress in a fiber 20 mm from the top of the beam at a section 2 m from the free end

OR

7. Derive an expression for the distribution of shear stress across the cross section. How average shear stress is defined? And relate maximum shear stress to the average shear stress in a rectangular section?

UNIT–IV

8. A simply supported beam of span 5 m, carrying a point load of 5 kN at a distance of 3 m from the left end. Find deflection under the load and maximum deflection. Take $E= 2x10^5 \text{ N/mm}^2$ and $I = 1x108 \text{ mm}^4$.

OR

9. A cantilever beam of span 7 m carries a point load of 15 kN at a distance of 4 m from the right end. Compute (a) the slope (b) the deflection under the load (c) the maximum deflection and its location. Take $E = 1.5 \times 105 \text{ N/mm}^2$ and $I=5 \times 108 \text{ mm}^4$

UNIT–V

10. A thick spherical shell of 100 mm internal diameter is subjected to an internal fluid pressure of 30 N/mm2. If the permissible tensile stress is 80 N/mm2, find the thickness of the shell.

OR

11. If the principal stress at a point in an elastic material are 2f tensile, 1.5f tensile and f compressive, calculate the value of 'f' at failure according to the maximum principal strain theory. The elastic limit in simple tension is 210 N/mm2 and poisson's ratio is 0.30

*** End ***

	Hall Ticket Number :]				
	Code: 20A131T													R-20		
	II B.Tech. I Semest	er Re	egul	ar 8	k Su	pple	eme	ntar	γ Ex	am	inat	ions	Febru	ary 20	23	
								-	/ing							
	Max. Marks: 70			(l Eng	ginee	ering)				Tim	ne: 3 H	ours	
	Notes 1 Question Dan		a: at a	of to			*****		a d T	0	D)					
	Note: 1. Question Pape 2. In Part-A, eac				-				and F	art	-B)					
	3. Answer ALL	-							t-B							
					N		RT-A		`							
1	. Answer all the fol	lowir	na s		-	oulso: SWE	• -				(5	X 2	= 10	Л)	со	BL
	Describe the prin		-				. 9.				(0	<i>/</i> _		,	1	4
	What is magnetic	-			•	U									1	1
C)	What are the tem	pora	ry a	dju	stmo	ents	of	the	thec	dol	ite?				3	1
d)	What is Tacheom	etry	?												4	2
e	Write a short note	e on	para	allax	k Ba	ır.									5	1
	<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)															
	Answer <i>five</i> quest	ions d	y cn	oosin	ig on	e qu	estio	n iro	m ea	cn u	nit (5 X I.	2 = 60 N	Marks)	со	BL
					UN	IIT–	I									
2.	A survey line	PQ	int	ters	ects	s a	por	nd. [.]	То	ove	rcor	ne	these			
	obstacles, two															
	the pond. A li AB, and a sec															
	right of AB. If							-								
	and CB=75 m	•										•		12M	1	4
					(OR										
3.			•								•		also	4014		
	state the prec	autic	nar	y m				ove	rcor	ne	tner	n.		12M	1	3
4.	The following	n 00	nco			IT-I		10.1	NOR	5 +	akar		ith a			
4.	dumpy level a															
	ground at 30				•							•				
	3.380, 1.055,															
	2.250. r.L of t R.L of various			• •									e the	12M	2	4
	IX.E OF Various	Siai	1 310			DR	Sinc	1 11 1	aic	VCI	500	' N .			Z	4
5.	Describe the t	hree	ind	lirec			ods	of Ic	ocati	nq	cont	tours	S.	12M	2	4
						IT–I		-		3					_	•
6.	Describe abo	ut te	mpc	orar	y ar	nd p	erm	nane	ent a	adju	ıstm	ents	s of a			
	theodolite.					_								12M	3	4
					(OR										

 Explain how you would measure horizontal angles by theodolite (repetition and reiteration)
 12M

UNIT–IV

8. Stadia readings were taken with a theodolite on a vertical staff with the telescope inclined at an angle of depression of 3° 30′. The staff readings were 2.990, 2.055 and 1.120. The reduced level of the staff station is 100.0 m, and the height of the instrument is 1.40 m. What is the reduced level of the ground at the instrument? Take constants as 100 and zero. 12M

4 3

4

3

3 2

OR

9. A tachometer is setup at an intermediate point on a traverse course PQ and the following observations are made on a staff held vertical.

Staff Station	Vertical Angle	Staff Intercept	Axial Hair Readings
Р	+8° 36′	2.350	2.105
Q	+6° 6′	2.055	1.895

The constants are 100 and 0. Compute the length PQ and the reduced level of Q. RL of P = 321.50 m. 12M

UNIT–V

10. a) Write about setting up and orientation of total station.
b) Elaborate safe alignment, existing alignment.
6M 5 2
6M 5 3

OR

11. a) What is total station, what are various functions of total station?
 6M 5 2
 b) Enumerate the instrumental errors in DGPS.
 6M 5 2

*** End ***

Page 2 of 2

Hall Ticket Number :							
Code: 20A133T	<u>,</u>					_	R-20

II B.Tech. I Semester Regular & Supplementary Examinations February 2023

Fluid Mechanics and Hydraulic Engineering

(Civil Engineering)			
Max. Marks: 70 Tim	ie: 3 Hour	S	

Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two mark.			
3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question)			
1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)	CO	ΒL	
 a) Differentiate Newtonian fluids and Non-Newtonian fluids 	1	L2	
 b) Define stream function and Velocity potential 	2	L2	
c) Define Bernoulli's equation and mention its applications	3	L2	
 d) Explain the concept of branched and equivalent pipe. 	4	L3	
 e) Explain the characteristic curves of pumps 	5	L3	
PART-B			
Answer five questions by choosing one question from each unit ($5 \times 12 = 60$) Marks)		
	Marks	СО	ļ
UNIT-I			

2. a) A pressurized tank contains oil (SG = 0.902) and has a square, 0.6-m by 0.6-m plate bolted to its side, as is illustrated in Fig.

The pressure gage on the top of the tank reads 50 kPa, and the outside of the tank is at atmospheric pressure. Estimate the magnitude and location of the resultant force on the attached plate?

b) Define pressure. Obtain an expression for the pressure intensity at a point in a static fluid.

OR

- 3. a) Derive an expression for the force exerted and centre of pressure for a completely submerged inclined plane surface?
 - b) U-tube manometer containing mercury was used to find the negative pressure in the pipe containing water. The right limb was open to the atmosphere. Find the vacuum pressure in the pipe if the difference of mercury level in the two limbs was 100 mm and height of water in the left limb from the Centre of the pipe was found to be 40 mm below.

UNIT–II

4. a) The components of a velocity field are given by u=x+y, $v=x^3y+16$ and w=0. Determine the location of any stagnation points (V=0) in the flow field.

ΒL

6M

6M

6M

6M

6M

1 L4

1 L2

1 L4

2 L4

1 L2

b) Water at 0.1 m³ /s and alcohol (SG=0.8) at 0.3 m³ /s are mixed in a y-duct as shown in Fig.

What is the average density of the mixture of alcohol and water? 6M 2 L4 OR

- 5. a) The diameters of a pipe at the sections 1 and 2 are 10cm and 15cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 20 m/s. determine also the velocity at section 2.
 - b) Derive an expression for three-dimensional continuity equation for fluid flow. State necessary assumptions
 - UNIT-III

5M 3

2 L4

2 L4

3 L4

3 L4

6M

6M

7M

8M

- 6. a) Derive Impulse-Momentum equation
 - b) A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm respectively is used to measure the flow of water. The reading of differential manometer connected to inlet and throat is 10 cm of mercury. Determine the rate of flow. Take Cd = 0.98.
 - OR
- 7. a) The rectangular channel in Fig. contains a V notch weir as shown. The intent is to meter flow rates between 2.0 and 6.0 m³/s with an upstream hook gage set to measure water depths between 2.0 and 2.75 m. What are the most appropriate values for the notch height and the notch half-angle?

	b)	Discuss the different types of notches and weirs	4M	3	L2
		UNIT-IV			
8.		Derive Hazen-Poiseuille equation for laminar flow in circular pipes	12M	4	L3
		OR			
9.	a)	Explain about Hydraulic Gradient Line and Total Energy Line	4M	4	L2
	b)	A compound pipe system consists of 1600 m of 0.6 m, 1200 m of 0.5 m, and 800 m of 0.3 m new cast iron pipe connected inseries. Convert the system to			
		(i) an equivalent length of 0.4 m pipe (ii) equivalent size pipe of 2500 m long UNIT-V	8M	4	L4
10.	a)	Discuss various efficiencies of a Centrifugal pump	4M	5	L2
	b)	The internal and external diamters of the impeller of a centrifugal pump are 200 mm and 400mm respectively. The pump is running at aspeed of 1000RPM. The vanes of the impeller at inlet and outlet are 20 and 30 respectively. Waterenter the pump radially and velocity of flow is condstant. Determine workdone by the impeller per unit weight of water.	8M	5	L4
		OR			
11.		Design a Pelton wheel for the following specifications (Consider K_{v1} =0.985 and K_{u1} =0.45) Shaft power = 12000 kW, head = 400 m and speed =800 RPM overall efficiency=80%, Jet diameter should not exceed one fifth of wheel diameter.			
		Determine Wheel diameter, jet diameter and number of jets necessary	12M	5	L4