\square
Code: 20A133T

II B.Tech. I Semester Regular Examinations March 2022

Fluid Mechanics and Hydraulic Engineering

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ CO $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) What is difference between gauge pressure and absolute pressure CO1 L1
b) Explain the stream line, stream tube and streak line CO 2
c) What are the advantages of Triangular notch over rectangular notch $\quad \mathrm{CO} \quad \mathrm{L} 1$
d) Explain the water hammer in water supply penstock CO 4
e) What are root causes of cavitation in turbine? State its remedies cos

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

2. a) State Newton's Law of Viscosity. Explain the impact of temperature on viscosity of liquids and gases

> 6M co1
b) A U-tube manometer is used to measure the pressure of oil of specific gravity 0.85 flowing in a pipe line. Its left end is connected to the pipe and the right-limb is open to the atmosphere. The centre of the pipe is 100 mm below the level of mercury (specific gravity $=13.6$) in the right limb. If the difference of mercury level in the two limbs is 160 mm , determine the absolute pressure of the oil in the pipe line

OR

3. a) What is centre of pressure? Derive an expression for total pressure and centre of pressure acting on submerged inclined plane body
b) A 1 m wide and 1.5 m deep rectangular plane surface lies in water in such a way that its plane makes an angle of 30° with the free water surface. Determine the total pressure and position of centre of pressure when the upper edge is 0.75 m below the free water surface.

6M co1
L4

UNIT-II

4. a) Explain the different types of fluid flows with practical examples in daily life.

6 M CO 2
b) In a two-dimensional incompressible flow, the fluid velocity components are given by $u=x-4 y$ and $v=-y-4 x$. Show that velocity potential exists and determine its form as well as stream function.

OR

5. a) What is stream function? Derive relation between stream function and velocity potential function.
b) In an incompressible flow, the velocity vector is given by: $V=\left(6 x t+y z^{2}\right) i+\left(3 t+x y^{2}\right) j+(x y-2 x y z-6 t z) k$ (i) Verify whether the continuity equation is satisfied. (ii) Determine the acceleration vector at point $L(2,2,2)$ at $t=2.0$.

UNIT-III

6. a) What is a Pitot tube? How is it used to measure velocity of flow at any point in a pipe or channel?
b) A Venturimeter with inlet and throat diameters 300 mm and 150 mm respectively is attached in a vertical pipe in which flow occurs from bottom to top. The distance between the point of entrance and to the point of throat of the Venturimeter is 750 mm . If the difference of mercury levels in the two limbs of differential gauge is 220 mm , find the discharge passing through the vertical pipe. Take coefficient of discharge, $\mathrm{C}_{d}=0.98$.

OR

7. a) What is momentum correction factor? Explain the applications of Momentum equation in the field.
b) A rectangular channel 15 m wide has a discharge of $02 \mathrm{~m}^{3}$ /s, which is measured by a right-angled V-notch-weir. Find the position of the apex of the notch from the bed of the channel if the maximum depth of water is not to exceed 1 m . Assume $\mathrm{C}_{\mathrm{d}}=062$

UNIT-IV

8. a) Derive Hagen-Poiseuille equation and state the assumptions made.
b) Two sharp ended pipes of diameters 50 mm and 100 mm respectively, each of length 100 m respectively, are connected in parallel between two reservoirs which have a difference of level of 10 m . If the friction factor for each pipe is 032 , calculate : (i) Rate of flow for each pipe, and (ii) The diameter of a single pipe 100 m long which would give the same discharge, if it were substituted for the original two pipes.

6M co3

OR

9. a) Explain the hydraulic gradient line and total energy gradient line with neat sketches and mention their practical applications
b) Water is to be supplied to the inhabitants of a college campus through a supply main. The following data is given : Distance of the reservoir from the campus $=3000 \mathrm{~m}$
Number of inhabitants = 4000
Consumption of water per day of each inhabitant = 180 litres
Loss of head due to friction $=18 \mathrm{~m}$
Co-efficient of friction for the pipe, $f=0007$
If the half of the daily supply is pumped in 8 hours,
determine the size of the supply main.

6M co4
UNIT-V
10. a) A Pelton wheel of 1.1 m mean bucket diameter works under a head of 500 m . The deflection of jet is 165° and its relative velocity is reduced over the bucket by 15 per cent due to friction. If the diameter of jet is 100 mm and the water is to leave the bucket without any whirl, determine
i) Rotational speed of wheel, (ii) Ratio of bucket speed to jet velocity, (iii) Impulsive force and power developed by the wheel, (iv) Available power (water power), (v) Power input to buckets, and (vi) Efficiency of the wheel with power input to bucket as reference input. Take $\mathrm{Cv}=0.97$.
b) Draw a schematic diagram of a Francis turbine and explain briefly its construction and working

OR

11. a) Explain briefly the following efficiencies of a centrifugal pump: (i) Manometric efficiency, (ii) Volumetric efficiency, (iii) Mechanical efficiency, and (iv) Overall efficiency.
b) A centrifugal pump delivers water against a net head of 145 m and a design speed of 1000 r.p.m. The vanes are curved back to an angle of 30° with the periphery. The impeller diameter is 300 mm and outlet width 50 mm . Determine the discharge of the pump if manometric efficiency is 95%
\square
Code: 20AC36T
II B.Tech. I Semester Regular Examinations March 2022

Managerial Economics and Financial Analysis

(Common to CE \& ECE)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad C O$
a) Scope of managerial economics CO 2
b) Internal and external economies of scale CO1
c) Characteristics of perfect competition. CO 2
d) Significance of capital CO 3
e) Purpose of ratio analysis CO3

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Illustrate the measurement of elasticity of demand.	7 M	CO 3	L 1
b) Explain the significance of elasticity of demand.	5 M	CO 2	L 1

3. Define demand forecasting. Explain the quantitative
methods of demand forecasting.
12 M
CO 3

UNIT-II

4. a) State the objectives of break-even analysis.

6M CO1
b) Highlight the assumptions of break-even analysis.

6 M CO

OR

5. a) Define cost. Explain different cost concepts used in the process of cost analysis.

6 M CO 3
b) Discuss the properties of Cobb-Douglas production function. 6 M CO 2

UNIT-III

6. a) State the features of monopoly.

4M CO1
b) Analyse the firm's revenue curves under monopoly.

8 M CO

OR

$\begin{array}{llll}\text { 7. Discuss about various forms of private sector business } \\ \text { organizations. } & 12 \mathrm{M} & \mathrm{CO} 2 \mathrm{~L} 2\end{array}$

UNIT-IV

8. a) Explain the advantages and limitations of Net Present Value (NPV) technique in capital budgeting.

8M CO2 L3
b) A project will cost ' 200,000 and will generate annual cash flows of '70,000. What is the project's payback period 4M CO2

OR

$\begin{array}{llll}\text { 9. Illustrate the procedure of calculating accounting rate of } \\ \text { return (ARR). Discuss its limitations. } & 12 \mathrm{M} & \mathrm{CO} 3 & \mathrm{~L} 3\end{array}$

UNIT-V

10. a) Define trial balance. Explain the objectives in preparing
it.
b) Prepare a trial balance for the month ending $31^{\text {st }}$ August 2021:

Cash a/c	50,500
Madhu capital a/c	30,000
Interest from bank	3,000

Discount (credit) 250
Sales 35,000

David a/c 3,000
Purchase returns a/c 500
Bank a/c 10,500

Rent a/c 2,500
Salaries a/c 500
Entertainment expenses 150
Purchase a/c 2,000
Sales returns a/c 300
OR
11. a) Define 'ratio'. Discuss the importance of ratio analysis. 6M CO2 L3
b) Classify the ratios and explain uses of each group.

6M CO2 L3
7M CO3 L4
\square
Code: 20AC31T
II B.Tech. I Semester Regular Examinations March 2022

Partial Differential Equations and Numerical Methods

(Common to CE and ME)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad \mathrm{co} \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Write merits and demerits of Bisection method. CO1 L1
b) Define backward differences. CO2 L2
c) Write formulas for first and second derivatives using Newton's forward interpolation formula.
d) Explain Taylor's series method for solving IVP $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$.
e) Write One dimensional wave equation with boundary and initial conditions.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Using bisection method, compute the real root of the equation $x^{3}-2 x-5=0$.
b) Develop an Iterative formula to find the square root of a positive number N.Using Newton-Raphson method.
3. a) Find a real root of the equation $x e^{x}-3=0$, Using False position method.
b) Find a real root of the equation $\log ^{-} \cdot 3=3$ using iteration method.
4. a) Evaluate $\Delta^{2}\left(\tan ^{-1} x\right)$.
b) Using Newton's forward formula, find the value of i) if

x	1	1.4	1.8	2.2
$f(x)$	3.49	4.82	5.96	6.5
(OR)				

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{x} & 4 & 6 & 8 & 10 \\
\hline \mathrm{y} & 1 & 3 & 8 & 16 \\
\hline
\end{array}
$$

UNIT-III

6. a) Determine $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ at $x=0$ from the following data

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline x & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline y & 4 & 8 & 15 & 7 & 6 & 2 \\
\hline
\end{array}
$$

b) Compute the value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using trapezoidal rule.

6 M CO3 L3
(OR)
7. a) Evaluate $\int_{0}^{0.6} e^{-x^{2}} d x$ by using Simpson's $\frac{1}{3}$ rd rule taking $6 \mathrm{M} \quad$ CO3 \quad L3 seven ordinates.
b) Compute the value of $\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$ using $6 \mathrm{M} \mathrm{CO3} \mathrm{L3}$ Simpson's $\frac{3}{8}$ th rule.

UNIT-IV

8. a) Using Taylor's method find $y(0.2)$ from

$$
\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0
$$

b) Using the fourth order Runge - Kutta formula, find $y(0.2)$ and $y(0.4)$ given that

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1 .
$$

(OR)

9. a) Apply Euler's method to solve $\frac{d y}{d x}=x+y$ with $y(0)=0$, Choosing the step length $h=0.2$ to
$6 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 3$ estimate y at $x=0.2,0.4,0.6$.
b) Find the value of y at $x=0.1$ by Picard's method, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.

6M CO4 L3

UNIT-V

10. A tightly stretched string with fixed end points $x=0$ and $x=L$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{L}\right) \quad 12 \mathrm{M} \quad$ co5 \quad L2 if it is released from rest from this position, find the displacement $y(x, t)$.

OR

11. Solve the heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ under the conditions

12M CO5 L3
$u(0, t)=0, u(L, t)=0$ for all $t ;$
$u(x, 0)=f(x) \quad, 0<x<L$.
|| B.Tech. I Semester Regular Examinations March 2022

Strength of Materials

(Civil Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions
($5 \times 2=10 \mathrm{M}$)
CO

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. A 400 mm long bar has rectangular cross-section $10 \mathrm{~mm} \times$ 30 mm . This bar is subjected to (i) 15 kN tensile force on $10 \mathrm{~mm} \times 30 \mathrm{~mm}$ faces, (ii) 80 kN compressive force on $10 \mathrm{~mm} \times 400 \mathrm{~mm}$ faces, and (iii) 180 kN tensile force on $30 \mathrm{~mm} \times 400 \mathrm{~mm}$ faces. Find the change in volume if $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mu=0.3$.

OR

3. A bar, 20 mm diameter and fixed at A , is stretched with a force of 10 kN to bring to support B and fix it. Length $A B=2 m$. Temperature is $27^{\circ} \mathrm{C}$. Determine at what temperature will the stress become zero? What will be the stress in the bar if the temperature rises to (i) $40^{\circ} \mathrm{C}$ and (ii) $50^{\circ} \mathrm{C}$?

UNIT-II

4. A beam of length 8 m is simply supported at its ends. It carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$. Draw the shear force and bending moment diagrams
5. An overhanging beam is loaded as shown in Fig. Determine the maximum shear force and bending moment acting upon the beam.
(a)

UNIT-III
6. Compare the moment carrying capacity of the section given in example 4 with equivalent section of the same area but
(i) square section
(ii) rectangular section with depth twice the width and
(iii) a circular section.

12M CO3
7. Figure shows the cross-section of a cantilever beam of 2.5 m span. Material used is steel for which maximum permissible stress is $150 \mathrm{~N} / \mathrm{mm}^{2}$. What is the maximum uniformly distributed load this beam can carry?

UNIT-IV

8. A simple supported beam of span 4 m carries a point load of 3 kN at a distance of 1 m each end. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $I=10^{8} \mathrm{~mm}^{4}$ for the beam, then using conjugate beam method determine: (i) slope at each end and under each load, (ii) deflection at the centre.

12M CO4

OR

9. A horizontal beam $A B$ is simply supported at A and $B, 6 \mathrm{~m}$ apart. The beam is subjected to a clockwise couple of 300 kNm at a distance of 4 m from the left end. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=2 \times 10^{6} \mathrm{~mm}^{4}$, determine deflection at the point where couple is acting and the maximum deflection.

12M CO4

UNIT-V

10. Four columns of same material and same length are of rectangular cross-section of same breadth b. The depth of the cross-section and the end conditions are, however, different are given as follows:

Column	Depth	End conditions
1	0.6 b	Fixed-Fixed
2	0.8 b	Fixed-hinged
3	1.0 b	Hinged-Hinged
4	2.6 b	Fixed-Free

Which of the above columns Euler buckling load maximum?

OR

11. At a point in a beam the normal stress along the length is $80 \mathrm{~N} / \mathrm{mm} 2$. The shear stress at that point is positive of magnitude $35 \mathrm{~N} / \mathrm{mm}^{2}$. Find the stresses on a plane whose normal is inclined at 300 to the longitudinal axis. Also find the principal stresses and planes on which they act.

II B.Tech. I Semester Regular Examinations March 2022

Advanced Surveying

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BTL}$
a) Compare Geodetic survey and plane survey. 3
b) List general methods for determining area. 4
c) Define parallex and explain steps to remove parallex. 1
d) Classify various systems of tacheometric survey. 2
e) Mention the advantage of total station over theodolite. 2

PART-B

Answer five questions by choosing one full question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) A distance of 2000 m was measured by a 30 m chain. Later it was detected that the chain was 0.1 m too long. Another 500 m was measured and it was detected that the chain was 0.15 m too long. If the chain was correct initially, determine the exact length that was measured.
b) Define orientation and explain the methods for orientation of plane table.

OR

3. a) Explain the parts of a metric chain with neat sketch.
b) Following bearings were observed with a compass. Calculate interior angles.
6M 23

Line	Fore Bearing	Line	Fore Bearing
$A B$	$60^{\circ} 30^{\prime}$	$D E$	$205^{\circ} 30^{\prime}$
$B C$	$122^{\circ} 00^{\prime}$	$E A$	$300^{\circ} 00^{\prime}$
$C D$	$46^{\circ} 0^{\prime}$		

UNIT-II

4. a) Calculate the RL value for given staff readings. $1.225,3.225,2.23,2.43,1.545$, $1.64,1.43,1.123,1.523,2.224,3.224$ was shifted third, sixth, ninth stations by H.I. Method. R.L for first reading is 100.
b) Enumerate the characteristics of contours with neat sketches.

OR

5. a) List methods adopted to determine the areas and explain DMD and DPD
b) A series of offsets were taken from a chain line to a curved boundary line at intervals of 15 meters in the following order.
$0,2.65,3.80,3.75,4.65,3.60,4.95,5.85 \mathrm{~m}$. Compute area between the chain line, the curved boundary and the end offsets by (i) Average ordinate rule
(ii) Trapezoidal rule and (iii) Simpson's rule.

