	Hal	I Ticket Number :															1
	Cod	le: 20A133T											-	F	R-20		
		ll B.Tec					•										
		FIU	ia M	eci			anc /il En	-			Eng	gine	ering				
	Mc	ax. Marks: 70				10.		****		91				Tim	ne: 3	Ηου	rs
		e: 1. Question Pape 2. In Part-A, each 3. Answer ALL	h ques the qu	stior uesti	n cari ons i	ries ' in Pa Com	oarts Two art-A <u>PA</u> npuls	(Par mar and <u>RT-</u> ory c	t-A a 'k. Par <u>A</u> uest	rt-B ion)							Blooms
		iswer <i>all</i> the follo	•				-				`		10M)			CO	Level
		hat is difference			-								ute pro	essur		01	L1
	, 	plain the strear		•												02	L2
		hat are the adva	-				-						gular	notch		03	L1
		plain the water						• •	• •							04	L2
e) VVI	hat are root cau	ises	of	cavi	tatio	on ir	n tur	bine	97 5	state	eits	reme	dies	С	05	L1
		Answer <i>five</i> ques	tions	by c		ing o JNI	one q	RT- uesti		om e	each	unit ((5 x 12		farks Marks) co	Blooms Level
2.	,	State Newton temperature of	n vis	COS	sity o	of lie	quid	s ar	nd g	ase	S		•		6M	CO	1 L2
	D)	A U-tube man of specific gra connected to atmosphere. The level of mercu the difference determine the	vity the The o ry (s of m	0.8 pip cen spec nerc	5 flo be a tre cific cury	owir and of t gra v lev ress	ng ir the he vity vel i ure	n a rig pipe = 1 n th	pipe ht-li s is 3.6 ie tv	e lin mb 100) in vo l	ie. I is) m the imb	ts le ope m b righ s is	eft end n to elow nt limt 160n	d is the the o. If nm,	6M	CO	1 L4
_	,						DR										
3.		What is centre pressure and inclined plane	cer body	ntre y	of	pr	essi	ure	act	ing	on	su	bmer	ged	6M	CO	1 L3
	b)	A 1m wide and water in such 30° with the fre and position o 0.75 m below t	n a e wa of cei	way ater ntre	y th sui of wat	fac fac pre ter s	its e. D ssu	plar etei re v	ne r rmin vher	nak ie tł	ies ne to	an otal	angle press	of ure	6M	CO	1 L4
4.	a)	Explain the c examples in da						flui	d f	low	S W	/ith	pract	ical	6M	CO	2 L2

	b)	In a two-dimensional incompressible flow, the fluid velocity components are given by $u = x - 4y$ and $v=-y-4x$. Show that velocity potential exists and determine its form as well as stream function.	6M	CO2	L4
		OR			
5.	,	What is stream function? Derive relation between stream function and velocity potential function.	6M	CO2	L3
	b)	In an incompressible flow, the velocity vector is given by: $V = (6xt + yz^2) i + (3t + xy^2) j + (xy - 2xyz - 6 tz) k$ (i) Verify whether the continuity equation is satisfied. (ii) Determine the acceleration vector at point L (2, 2, 2) at t = 2.0. UNIT-III	6M	CO2	L4
6.	a)	What is a Pitot tube? How is it used to measure velocity of flow at any point in a pipe or channel?	6M	CO3	L2
	b)	A Venturimeter with inlet and throat diameters 300 mm and 150 mm respectively is attached in a vertical pipe in which flow occurs from bottom to top. The distance between the point of entrance and to the point of throat of the Venturimeter is 750 mm. If the difference of mercury levels in the two limbs of differential gauge is 220 mm, find the discharge passing through the vertical pipe. Take co-			
		efficient of discharge, $C_d = 0.98$.	6M	CO3	L4
		OR			
7.	a) b)	What is momentum correction factor? Explain the applications of Momentum equation in the field. A rectangular channel 1.5 m wide has a discharge of 0.2m ³ /s, which is measured by a right-angled V-notch-weir. Find the position of the apex of the notch from the bed of the	6M	CO3	L3
		channel if the maximum depth of water is not to exceed 1	6M		
		m. Assume $C_d = 0.62$	UIVI	CO3	L4
8.	a)	Derive Hagen-Poiseuille equation and state the			
		assumptions made.	6M	CO4	L3
	b)	Two sharp ended pipes of diameters 50mm and 100mm respectively, each of length 100m respectively, are connected in parallel between two reservoirs which have a difference of level of 10 m. If the friction factor for each pipe is 0.32 , calculate : (i) Rate of flow for each pipe, and (ii) The diameter of a single pipe 100 m long which would give the same			
		discharge, if it were substituted for the original two pipes. OR	6M	CO4	L4
9.	a)	Explain the hydraulic gradient line and total energy gradient line with neat sketches and mention their practical applications	6M	CO4	L3

	C	ode: 20)A133T	
b)	Water is to be supplied to the inhabitants of a college campus through a supply main. The following data is given : Distance of the reservoir from the campus = 3000 m Number of inhabitants = 4000 Consumption of water per day of each inhabitant = 180 litres Loss of head due to friction = 18 m Co-efficient of friction for the pipe, f = 0.007 If the half of the daily supply is pumped in 8 hours, determine the size of the supply main. UNIT-V	6M	CO4	L4
10. a)	A Pelton wheel of 1.1 m mean bucket diameter works under a head of 500 m. The deflection of jet is 165° and its relative velocity is reduced over the bucket by 15 per cent due to friction. If the diameter of jet is 100 mm and the water is to leave the bucket without any whirl, determine i) Rotational speed of wheel, (ii) Ratio of bucket speed to jet velocity, (iii) Impulsive force and power developed by the wheel, (iv) Available power (water power), (v) Power input to buckets, and (vi) Efficiency of the wheel with power input			
	to bucket as reference input. Take Cv = 0.97.	6M	CO5	L5
b)	Draw a schematic diagram of a Francis turbine and explain briefly its construction and working	6M	CO5	L2
11 0)	OR Evaluing briefly the following efficiencies of a contrifugal			
11. a)	Explain briefly the following efficiencies of a centrifugal pump: (i) Manometric efficiency, (ii) Volumetric efficiency, (iii) Mechanical efficiency, and (iv) Overall efficiency.	6M	CO5	2
b)	A centrifugal pump delivers water against a net head of 14.5 m and a design speed of 1000 r.p.m. The vanes are curved back to an angle of 30° with the periphery. The impeller diameter is 300 mm and outlet width 50 mm. Determine the discharge of the pump if manometric			
	efficiency is 95% *** End ***	6M	CO5	L5
	LIIU			

На	all Ticket Number :			_
Coc	le: 20AC36T	R-	20	
	II B.Tech. I Semester Regular Examinations March 20			
	Managerial Economics and Financial Analysis (Common to CE & ECE)			
Ma	x. Marks: 70	Time:	3 Hou	rs
Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)	4014		Bloom
	1. Answer all the following short answer questions $(5 \times 2) =$	10M)	CO	Level
a)	Scope of managerial economics		CO2	L1
b)	Internal and external economies of scale		CO1	L1
C)	Characteristics of perfect competition.		CO2	L2
d)	Significance of capital		CO3	L3
e)	Purpose of ratio analysis		CO3	L3
	PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	= 60 Mai	·ks)	
		Marks	СО	Bloom Level
	UNIT–I			Level
a)	Illustrate the measurement of elasticity of demand.	7M	CO3	Ľ
b)	Explain the significance of elasticity of demand.	5M	CO2	Ľ
	OR			
	Define demand forecasting. Explain the quantitative			
	methods of demand forecasting.	12M	CO3	Ľ
	UNIT-II			
,	State the objectives of break-even analysis.		CO1	L
b)	Highlight the assumptions of break-even analysis.	6M	CO3	L
、	OR Difference in the second se			
a)	Define cost. Explain different cost concepts used in the process of cost analysis.	6M	CO3	L
b)	Discuss the properties of Cobb-Douglas production function.		CO2	
5)			002	L-4
a)	State the features of monopoly.	4M	CO1	L
⊆, b)	Analyse the firm's revenue curves under monopoly.		CO3	L2

		OR			2040301	
7.		Discuss about various forms of privorganizations.	vate sector business		CO2	L2
		UNIT–IV				
8.	a)	Explain the advantages and limitative Value (NPV) technique in capital but			CO2	L3
	b)	A project will cost '200,000 and will g flows of '70,000. What is the projec		CO2	L3	
-		OR				
9.		Illustrate the procedure of calculating return (ARR). Discuss its limitations	•		CO3	L3
		UNIT–V				
10.	a)	Define trial balance. Explain the obit.	pjectives in preparing	5M	CO3	L3
	b)	Prepare a trial balance for the mont 2021:				
		Cash a/c	50,500			
		Madhu capital a/c	30,000			
		Interest from bank	3,000			
		Discount (credit)	250			
		Sales	35,000			
		David a/c	3,000			
		Purchase returns a/c	500			
		Bank a/c	10,500			
		Rent a/c	2,500			
		Salaries a/c	500			
		Entertainment expenses	150			
		Purchase a/c	2,000			
		Sales returns a/c	300	7M	CO3	L4
		OR				
11.	a)	Define 'ratio'. Discuss the importance	ce of ratio analysis.	6M	CO2	L3

b) Classify the ratios and explain uses of each group. 6M CO2 L3

*** End ***

Hall Ticket Number :			7
Code: 20AC31T	R	20	
II B.Tech. I Semester Regular Examinations March			
Partial Differential Equations and Numerical Me (Common to CE and ME)	emoas		
Max. Marks: 70	Time:	3 Hour	S
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 			
1. Answer all the following short answer questions $(5 \times 2 = 1)$	10M) Co		oms vel
a) Write merits and demerits of Bisection method.	CC		.1
b) Define backward differences.	CC)2 L	.2
c) Write formulas for first and second derivatives using New forward interpolation formula.	ton's co)3 L	.3
 d) Explain Taylor's series method for solving IVP 			
$\frac{dy}{dx} = f(x, y) with y(x_0) = y_0.$	CC	04 L	.2
e) Write One dimensional wave equation with boundary and conditions.	initial co)5 L	.1
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5	• X 12 = 60 IV Marks	iarкs) со	Blooms
UNIT–I	Marks	00	Level
2. a) Using bisection method, compute the real root of	the		
equation $x^3 - 2x - 5 = 0$.	7M	CO1	L4
 b) Develop an Iterative formula to find the square root of positive number N. Using Newton-Raphson method. (OR) 	ofa 5M	CO1	L3
3. a) Find a real root of the equation $xe^x - 3 = 0$, Using Fa position method.	alse 6M	CO1	L3
b) Find a real root of the equation $\log_{10x} = 3$ using iterat method.	tion 6M	CO1	L4
4. a) Evaluate $\Delta^2 (\tan^{-1} x)$.	4M	CO2	L3

Code: 20AC31T

b) Using Newton's forward formula, find the value of :) if f(1.2 1.8 2.2 8M 1 1.4 CO₂ L4 3.49 4.82 5.96 6.5 f(x)(OR) 5. a) Compute f(27) Using Lagrange's formula from the following table: 5M CO2 L3 17 14 31 35 x 68.7 64.0 44.0 39.1 f(x)b) Construct Newton's backward interpolation formula for the following data and hence find the value of y for $x = \frac{1}{2}$. 5M CO2 L4 8 10 4 6 Х 3 8 1 16 UNIT-III 6. a) Determine $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ at x = 0 from the following data 6M CO3 L4 x012345y4815762 b) Compute the value of $\int_{0}^{1} \frac{dx}{1+x^2}$ using trapezoidal rule. 6M CO3 L3 (**O**R) 7. a) Evaluate $\int_{2}^{0.6} e^{-x^2} dx$ by using Simpson's $\frac{1}{3}$ rd rule taking 6M CO3 L3 seven ordinates. b) Compute the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ using 6M CO3 L3 Simpson's $\frac{3}{8}$ th rule. UNIT-IV 8. a) Using Taylor's method find y(0.2) from 6M CO₄ L2 $\frac{dy}{dx} = 2y + 3e^x, y(0) = 0.$

b) Using the fourth order Runge – Kutta formula, find

$$y(0.2) and y(0.4)$$
 given that
 $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, y(0) = 1.$
(OR)
9. a) Apply Euler's method to solve $\frac{dy}{dx} = x + y$ with
 $y(0) = 0$, Choosing the step length $h = 0.2$ to
estimate y at $x = 0.2, 0.4, 0.6.$
b) Find the value of y at $x = 0.1$ by Picard's method, given
that $\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1.$
(UNIT-V)
10. A tightly stretched string with fixed end points $x = 0$ and
 $x = L$ is initially in a position given by $y = y_0 \sin^3\left(\frac{f x}{L}\right)$
if it is released from rest from this position, find
the displacement $y(x,t)$.
OR
11. Solve the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the
conditions 12M COS L3

u(0,t) = 0, u(L,t) = 0 for all t; u(x,0) = f(x), 0 < x < L.

	all Ticket Number :									R-2	20	7
Cod	de: 20A132T II B.Tech. I Ser	neste	r Requi	ar Ev	amir	natic	nns	Marc	L 20 h			
		Stre	e ngth Civil Er	of Mc	iteri	als	113	marc	211 20			
M	ax. Marks: 70	ſ		*****		,				Time:	3 Hou	Jrs
Note	e: 1. Question Paper consist2. In Part-A, each question3. Answer ALL the question	on carri tions ir	ies Two n Part- A	mark. and F <u>RT-A</u>	art-]	В	rt-B)				-
	Answer all the following s			•		•			,		СО	Bloom
	steel bar of 40 mm × 40 axial compressive load		-									
an	d E=200GPa, the elong	ation			•				_		CO1	2
•	fine point of contraflexu					_				_	CO2	4
,	Steel rod 200 mm diame nd radius of curvature. 7										000	
	ppe is maximum at								/111111	•	CO3 CO4	4
	e ratio of hoop stress to										CO4	2
,				RT-B							000	-
	Answer <i>five</i> questions by	choosiı			fron	n eac	h ur	nit (5	x 12 =	= 60 Mar	·ks)	Blooms
										Marks	CO	Level
2.	A 400 mm long bar ha 30 mm. This bar is s 10mm × 30 mm fac 10mm × 400 mm fac 30mm × 400 mm fac	as rec subjec ces, (ces, a	cted to ii)80 k and (iii	(i)15 N co)180	kN mpro kN	ten: essi ten:	sile ive sile	forc forc forc	e on e on e on			
	E=2×105 N/mm2 and	l μ =								12M	CO1	2
3.	A bar, 20 mm diameter of 10kN to bring to Temperature is 27°C.	suppc Deter	ort B a mine a	nd fix t wha	c it. t ten	Ler nper	ngth ratu	n AB re wi	=2m. Il the)		
	stress become zero? temperature rises to (i) 40°C		ii) 50	_	s in	tne	bar	if the		CO1	2
4.	A beam of length 8 carries a uniformly d shear force and bend	istribu	uted lo	ad of	40	kN/				•	CO2	3

5. An overhanging beam is loaded as shown in Fig. Determine the maximum shear force and bending moment acting upon the beam.

12M C02 3

- 6. Compare the moment carrying capacity of the section given in example 4 with equivalent section of the same area but
 - (i) square section
 - (ii) rectangular section with depth twice the width and
 - (iii) a circular section.

12M _{CO3}

3

- OR
- 7. Figure shows the cross-section of a cantilever beam of 2.5m span. Material used is steel for which maximum permissible stress is 150 N/mm². What is the maximum uniformly distributed load this beam can carry?

12M CO3 3

UNIT–IV

8. A simple supported beam of span 4 m carries a point load of 3 kN at a distance of 1m each end. If $E = 2 \times 10^{5} \text{ N/mm}^2$ and $I = 10^8 \text{mm}^4$ for the beam, then using conjugate beam method determine: (i) slope at each end and under each load, (ii) deflection at the centre.

OR

9. A horizontal beam AB is simply supported at A and B, 6 m apart. The beam is subjected to a clockwise couple of 300kNm at a distance of 4m from the left end. If $E=2x10^5N/mm^2$ and $I=2x10^6 mm^4$, determine deflection at the point where couple is acting and the maximum deflection.

12M _{CO4}

12M CO4 3

3

UNIT-V

10. Four columns of same material and same length are of rectangular cross-section of same breadth b. The depth of the cross-section and the end conditions are, however, different are given as follows:

Column		Depth		E	End condit	tions			
1		0.6 b			Fixed-Fix	ed			
2		0.8 b			Fixed-hing	ged			
3		1.0 b			Hinged-Hi	nged			
4		2.6 b			Fixed-Fr	ee			
Which of	the	above	columns	Euler	buckling	load			
maximum?					Ū		12M	CO5	3
			OR						

At a point in a beam the normal stress along the length is 80N/mm2. The shear stress at that point is positive of magnitude 35 N/mm². Find the stresses on a plane whose normal is inclined at 300 to the longitudinal axis. Also find the principal stresses and planes on which they act.
 12M CO5

3

		7	
Code: 20A131T	·20		
II B.Tech. I Semester Regular Examinations March 2022			
Advanced Surveying			
(Civil Engineering) Max. Marks: 70 Time	e: 3 Hou	Jrs	

 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
<u>PART-A</u> (Compulsory question)			
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	CO	BTL	
a) Compare Geodetic survey and plane survey.	3	3	
b) List general methods for determining area.	4	2	
c) Define parallex and explain steps to remove parallex.	1	2	
d) Classify various systems of tacheometric survey.	2	3	
e) Mention the advantage of total station over theodolite.	5	2	
PART-B			
Answer <i>five</i> questions by choosing one full question from each unit ($5x12 = 6$	U Marks Marks	-	E
UNIT-I	IVIAI NS	00	C
a) A distance of 2000m was measured by a 30m chain. Later it was detected that			
the chain was 0.1m too long. Another 500m was measured and it was detected			
that the chain was 0.15m too long. If the chain was correct initially, determine	CM.	4	
the exact length that was measured.	6M 6M	1 3	
 b) Define orientation and explain the methods for orientation of plane table. OR 	OIVI	3	
a) Explain the parts of a metric chain with neat sketch.	6M	1	
b) Following bearings were observed with a compass. Calculate interior angles.	6M	2	
Line Fore Bearing Line Fore Bearing			
AB 60° 30' DE 205° 30'			
BC 122°00' EA 300°00'			
CD 46 ⁰ ⁰ 0'			
UNIT–II			
UNIT-IIa) Calculate the RL value for given staff readings. 1.225, 3.225, 2.23, 2.43, 1.545,			
UNIT-II a) Calculate the RL value for given staff readings. 1.225, 3.225, 2.23, 2.43, 1.545, 1.64, 1.43, 1.123, 1.523, 2.224, 3.224 was shifted third, sixth, ninth stations by	6M	2	
UNIT–II a) Calculate the RL value for given staff readings. 1.225, 3.225, 2.23, 2.43, 1.545, 1.64, 1.43, 1.123, 1.523, 2.224, 3.224 was shifted third, sixth, ninth stations by H.I. Method. R.L for first reading is 100.	6M 6M	2 3	
UNIT-II a) Calculate the RL value for given staff readings. 1.225, 3.225, 2.23, 2.43, 1.545, 1.64, 1.43, 1.123, 1.523, 2.224, 3.224 was shifted third, sixth, ninth stations by	6M 6M	2 3	
 UNIT-II a) Calculate the RL value for given staff readings. 1.225, 3.225, 2.23, 2.43, 1.545, 1.64, 1.43, 1.123, 1.523, 2.224, 3.224 was shifted third, sixth, ninth stations by H.I. Method. R.L for first reading is 100. b) Enumerate the characteristics of contours with neat sketches. 			

intervals of 15 meters in the following order. 0, 2.65, 3.80, 3.75, 4.65, 3.60, 4.95, 5.85 m. Compute area between the chain line, the curved boundary and the end offsets by (i) Average ordinate rule (ii) Trapezoidal rule and (iii) Simpson's rule.

4M 4

3

Code: 20A131T

8M

4M

6M

6M

2

2

2

4

2

2

2

3

UNIT–III

- 6. a) Explain the method of measuring horizontal angle by reiteration with table for recording readings
 - b) Compare repetition and reiteration method of horizontal angle measurement.

OR

- 7. a) Explain the method of vertical angle measurement with table using theodolite.
 - b) A closed traverse was conducted round an obstacle and the following observations were made. Work out the missing quantities.

Side	Length (m)	Azimuth
AB	500	98°30'
BC	620	30°20'
CD	468	298°30'

Side	Length (m)	Azimuth
DE	?	230°0'
EA	?	150°10'

UNIT–IV

a)	Two tangents intersect at chainage 59+60 and the deflection angle being 50 30', Calculate the necessary data for setting out a curve of 15 chains radius to connect two tangents if it is intended to set out the simple circular curve by offset from chords produced. Take the peg intervals equal to 100 links, the length of the chain being equal to 20m (100 links).	6M	5	4
b)	A tacheometer was set up at a station A and the readings on a vertically held staff at B were 2.235, 2.635 and 2.965, the line of sight being at an inclination of +8°24'. Another observation on the vertically held staff at BM gave readings 1.650, 1.930 and 2.250, the inclination of the line of sight being +1°6'. Calculate the horizontal distance between A and B and the elevation of B if the RL of BM			
	is 418.685 meters. The constants of instruments were 100 and 0.3	6M	2	4
	OR			
a)	Explain the procedure of setting out a simple circular curve by offsets from long chord method with neat sketch.	6M	5	2
b)	Enumerate the conditions under which tacheometric survey is advantageous.	6M	1	2
	UNIT-V			
a)	Enumerate the working principle of DGPS	6M	5	2
b)	Explain briefly the functions of total station	6M	5	2
	OR			
a)	List the advantages and disadvantages of ground radar penetration survey	6M	5	2
b)	Explain safe alignment of road using DGPS	6M	5	2
	*** End ***			
	 b) a) b) a) b) 	 30', Calculate the necessary data for setting out a curve of 15 chains radius to connect two tangents if it is intended to set out the simple circular curve by offset from chords produced. Take the peg intervals equal to 100 links, the length of the chain being equal to 20m (100 links). b) A tacheometer was set up at a station A and the readings on a vertically held staff at B were 2.235, 2.635 and 2.965, the line of sight being at an inclination of +8°24'. Another observation on the vertically held staff at BM gave readings 1.650, 1.930 and 2.250, the inclination of the line of sight being +1°6'. Calculate the horizontal distance between A and B and the elevation of B if the RL of BM is 418.685 meters. The constants of instruments were 100 and 0.3 OR a) Explain the procedure of setting out a simple circular curve by offsets from long chord method with neat sketch. b) Enumerate the working principle of DGPS b) Explain briefly the functions of total station OR a) List the advantages and disadvantages of ground radar penetration survey b) Explain safe alignment of road using DGPS 	30', Calculate the necessary data for setting out a curve of 15 chains radius to connect two tangents if it is intended to set out the simple circular curve by offset from chords produced. Take the peg intervals equal to 100 links, the length of the chain being equal to 20m (100 links). 6M b) A tacheometer was set up at a station A and the readings on a vertically held staff at B were 2.235, 2.635 and 2.965, the line of sight being at an inclination of +8°24'. Another observation on the vertically held staff at BM gave readings 1.650, 1.930 and 2.250, the inclination of the line of sight being +1°6'. Calculate the horizontal distance between A and B and the elevation of B if the RL of BM is 418.685 meters. The constants of instruments were 100 and 0.3 6M UNIT-V a) Explain the procedure of setting out a simple circular curve by offsets from long chord method with neat sketch. 6M b) Explain briefly the functions of total station 6M OR a) Explain briefly the functions of total station 6M OR a) Enumerate the working principle of DGPS 6M OR Altist the advantages and disadvantages of ground radar penetration survey 6M OR Altist the advantages and disadvantages of ground radar penetration survey	30', Calculate the necessary data for setting out a curve of 15 chains radius to connect two tangents if it is intended to set out the simple circular curve by offset from chords produced. Take the peg intervals equal to 100 links, the length of the chain being equal to 20m (100 links). 6M 5 b) A tacheometer was set up at a station A and the readings on a vertically held staff at B were 2.235, 2.635 and 2.965, the line of sight being at an inclination of +8°24'. Another observation on the vertically held staff at BM gave readings 1.650, 1.930 and 2.250, the inclination of the line of sight being +1°6'. Calculate the horizontal distance between A and B and the elevation of B if the RL of BM is 418.685 meters. The constants of instruments were 100 and 0.3 6M 2 OR IUNIT-V a) Explain the procedure of setting out a simple circular curve by offsets from long chord method with neat sketch. 6M 5 b) Explain briefly the functions of total station OR a) Enumerate the working principle of DGPS b) Explain briefly the functions of total station OR a) List the advantages and disadvantages of ground radar penetration survey 6M 5 b) Explain safe alignment of road using DGPS