	F	all Ticket Number :																
	Co	de: 20A133T	I	1		-1							I		F	R-20		
	II E	3.Tech. I Semester	_	-											ecem	ber 20	23	
		Fluid	Me	cho			nd ŀ Engi	-			ng	line	erii	ng				
	Mc	ax. Marks: 70			(mgj						Time	e: 3 Ho	Urs	
	No	te: 1. Question Paper	con	cictc	oft		**** arts l		- Δ a	nd P	art	.R)						
	NO	2. In Part-A, each d				•		-			art	נסי						
		3. Answer ALL the	ques	stion	s in	Part-			rt-B									
					(Co	mpu	<u>PAR</u> Ilsor		estio	n)								
	1. A	nswer <i>all</i> the follo	wing	g sh	•	-		•••		•		(5)	X 2	= 1	OM)		со	BL
		Vhy viscosity of ga		-				-				•			,		1	1
	•	Vhat is difference I									-				of flu	ids?	2	1
		Vhat are Practical															3	1
C	v (k	Vhat is water ham	mer	pre	ssu	re in	ı pip	es?		-							4	1
e	e) V	Vhat is the function	n of	Sur	ge t	ank	? St	ate	its lo	ocat	ior	ı?					5	1
							PAR											
	Д	Answer five questions	s by	cho	osing	g one	e qu	estic	on fro	om e	ac	h un	nit (.	5 x 1	12 = 60			וס
							UNI	т_і								Marks	CO	BL
2.	a)	What is differen	ice	betv	wee				an a	and	N	on	Ne	wto	nian			
	,	fluids? Explain th														6M	1	2
	b)	Calculate the ca	apilla	ary	rise	/fall	in a	a gl	lass	tub	e	of 2	2.5	mr	n in			
		diameter when i									•							
		tension of water a													-	CM		
		specific gravity o	rme	ercu	ry is	5 13.			ingle	e or	CO	ntac	t is	13	0°	6M	1	3
2	\sim	What is control	of r	roo	our	. 2 г	0 Joriv			vor	~~~	nion	of	~~	ntro			
3.	a)	What is centre pressure on incli	•							•	853	51011		Ce	nue	6M	1	6
	b)	A Circular plate 3				•	•				ate	er ir	า รบ	ich	wav	••••	·	0
	,	that the plane of													•			
		surface of water.	De	tern	nine	the	e tota	al p	ress	ure	ar	nd th	he p	oos	ition			
		of the center of						upp	oer (edg	ec	of pl	late	is	2 m			
		below the free su	irfac	e o	t the											6M	1	3
Л		Dariva the contin	:4.,						dima			al fl				CM		
4.			•	•											4 2)	6M	2	6
	b)	A pipe (1) 450 m of diameters 300									-	-	•					
		velocity in 450 m							•		<i>.</i>				age			
		(i) Discharge thro	bugh	า 45	0 m	m d	iame	eter	pipe	Э								
		(ii) Velocity in 20				nete	r pi	be i	f the	e av	era	age	vel	locit	ty in			
		300 mm pipe	is 2	.5 m	n/s.		-	_								6M	2	3
_				-		-	0					•.			<i>.</i>			
5.	a)	Differential betw function? State th						lion	an	dv	elo	ocity	/ p	ote	ntial	6M	~	~
				reid	uUI	SIIIÞ	,										2	2

	b)	A stream function is defined by the expression $= 2x^2 - 2y^3$. Calculate the components of velocity and velocity potential at point point(3,1)	6M	2	3
		UNIT-III	0.111	2	U
6.	a)	Derive Impulse- Momentum equation	6M	3	6
	b)	A 45 [°] reducing bend is connected in a pipe line, the diameters at the inlet and outlet of the bend being 600mm and 300mm respectively. Find the force exerted by water on the bend if the intensity of pressure at inlet to bend is 8.829N/cm ² and rate of flow of water is 600litres/s.	6M	3	3
		OR			
7.	a)	Write briefly and Sketch neatly the following i) Pitot tube and ii) Venturimeter	6M	3	1
	b)	A discharge of 0.06 m^3 /s was measured over a right-angled notch. While measuring the head over the notch, an error of 1.5mm was made. Determine the percentage error in the discharge if the co-efficient of discharge for the notch is 0.6	6M	0	2
		discharge, if the co-efficient of discharge for the notch is 0.6.	OIVI	3	3
8.	a)	Using Hagen -Poiseuille equation, derive an expression for the head loss in a pipe of diameter D and length L in terms of Reynolds number and Velocity head	6M	4	6
	b)	Calculate the pressure drop and power required to maintain $0.05m^3$ /s of petrol (Sp.gr. 0.7) through a steel pipe 0.2 m diameter and 1000 m long. Take coefficient of friction, f = 0.0025.	6M	4	3
		OR			
9.	a)	Explain the Moody's chart and its significance in design of pipe flow problems	4M	4	2
	b)	A pipe line of 600 mm diameter is 1.5 km long. To increase the discharge, another line of the same diameter pipe is introduced parallel to the first in the second half of the length. If $f = 0.01$ and			
		head at inlet is 300 mm. Calculate the increase in discharge UNIT-V	8M	4	3
10.	a)	Explain the working principle of pelton turbine with neat sketches	6M	5	2
	b)	What is Cavitation? Explain its causes, effects and remedies OR	6M	5	2
11.	a)	What is minimum starting speed of centrifugal pump? Derive its basic equation	6M	5	6
	b)	A centrifugal pump delives water against a net head of 14.5 m and design speed of 1000 rpm. The vanes are curved back to an angle of 30 ^o with the periphery. The impeller diameter is 300 mm and outlet width 50 mm. Determine the discharge of the pump if			
		the manometric efficiency is 95%.	6M	5	3
		*** End ***			

H	all Ticket Number :			
Co	ode: 20AC36T	R-20		
	B.Tech. I Semester Regular & Supplementary Examinations Decer	mber 20	23	
	Managerial Economics and Financial Analysis			
٨٨	(Common to CE & ECE) ax. Marks: 70	me: 3 Hc	u irc	
7 • (•	**************************************	110.0110	015	
No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)			
	1. Answer all the following short answer questions ($5 \times 2 = 10M$) CO	BL	
	a) What is Demand Schedule?	1	L1	
	b) List out the determinants of cost	2	L1	
	c) Briefly explain about monopoly.	3	L1	
	d) What is profitability index	4	L1	
	e) What is going concern concept?	5	L1	
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$		со	BI
	UNIT-I	Marko	00	0.
a)	Define law of demand. What are its exceptions? Explain.	6M	1	L
b)	Explain nature and scope of Managerial economics.	6M	1	L
	OR			
	Write a short note on the following. i) Survey Method			
	ii) Expert Opinion Method iii) Test Marketing	12M	1	L
	UNIT-II			
a)	Define production. Explain the law of variable proportions of			
	the production.	6M	2	Ľ
b)	Explain Law of Returns to scale with appropriate examples.	6M	2	Ľ
	OR			
a)	What do you mean by Iso-Quants? Explain the law of returns			
	to scale of production.	6M	2	Ľ
b)	Define Break-Even-Point. Explain Assumptions and uses of			
	Break Even Analysis	6M	2	Ľ
	UNIT-III Discuss why newfoot Compatition is better form of compatition			
	Discuss why perfect Competition is better form of competition when compared to Monopoly	12M	~	1.4
	when compared to Monopoly.	I ZIVI	3	Ľ
	OR			

Code: 20AC36T

6M

- 7. a) Explain the features of partnership company. What are its advantages and disadvantages?
 - b) What are the different forms of business organizations? Comment on their relative merits and demerits.

_ _

3 L2

6M 3 L2

UNIT-IV

From the following information calculate the net present value of the two projects and suggest which of the project should be accepted assuming a discounting rate is 10% (I year 0.909, II Year 0.857, III Year 0.751, IV Year 0.698, V Year 0.591)

	Project X	Project Y
Investment	Rs 20,000	Rs,30,000
Estimated Life	5 Years	5 years
Scrape value	Rs 1000	Rs 1000

Project cash flows are as follows

Year	Project X	Project Y
1	5,000	20,000
2	10,000	10,000
3	10,000	5,000
4	3,000	3,000
5	2,000	2,000
	^	D

12M 4 L4

4 L2

12M

OR

9. What factors should a finance manager take into consideration while raising sources of capital?

UNIT-V

- 10. Journalize the following transactions in the books of Mr. Hari. April 2022
 - 1. Mr. Hari started business with cash Rs. 50,000.
 - 2. Purchased furniture for cash Rs. 10,000.
 - 4. Purchased goods for cash Rs. 25,000.
 - 5. Bought goods from Mr. Kamalesh Rs. 15,000.
 - 6. Sold goods for cash Rs. 36,000.
 - 8. Sold goods to Mr. Ram for Rs. 30,000.
 - 10. Paid cash to Mr. kamalesh Rs. 15,000.
 - 14. Received cash from Mr. Ram Rs. 18,000.
 - 16. Purchased goods from Mr. Sohan Rs. 6,000.
 - 18. Paid rent for office Rs. 1,000.
 - 26. Received commission Rs. 750.
 - 27. Paid salary to Mr. Bopal Rs. 1,200

OR

12M 5 L3

11. The following trading and profit and loss account of a Fantacy Ltd. For the year 31/03/2011 is given below.

Particulars	Amount	Particulars	Amount
To Opening stock	76,250	By Sales	5,00,000
To Purchases	3,15,250	By Closing stock	98,500
To Carriage	2,000		
To Wages	5,000		
To Gross profit c/d	2,00,000		
Total	5,98,500	Total	5,98,500
To Administration expenses	1,01,000	By Gross profit b/d	2,00,000
To Selling and distribution expenses	12,000	By Non operating income (Profit on sale of shares)	6,000
To Non operating expenses	2,000		
To Financial expenses	7,000		
To Net profit c/d	84,000		
Total	2,06,000	Total	2,06,000

Calculate:

- i. Gross profit ratio
- ii. Expenses ratio
- iii. Operating ratio
- iv. Net profit ratio
- v. Operating (net) profit ratio

12M 5 L3

*** End ***

	Н	all Ticket Numbe	er:													
	Co	ode: 20AC31T	Ľ.											R-20		
		B.Tech. I Seme		-	ial E	-	itio	ns a	nd	Nu	me		ions Decen I Methods	nber 2	2023	
	M	ax. Marks: 70				Omm		****)		Tin	ne: 3 H	lours	
	No	ote: 1. Question 2. In Part-A, e 3. Answer AL	each que	stior	n carr	ries T	wo i - A a	mark	s.		Part	:-B)				
					(C	omp	ulso	ry qı	lesti	on)						
	1.	Answer all the fo	llowing s	hort	answ	ver qu	uesti	ons	(5 X	2 = '	10M)		CC	D BL	
	a)	Write the formul	la of New	ton -	-Rap	hson	met	hod.						CC	01 L1	
	b)	Show that $(1+2)$	$(1-\nabla)$	=1										CC)2 L1	
	c)	Write Simpsons	s 1/3 rule.											CC	03 L1	
	d)	Using Euler's m	nethod, fir						e of y	/ co	rres	pondi	ing to $x = 0.2$	5,		
		given that $\frac{dy}{dx}$ =	=1+ <i>xy</i> a	nd y	= 1	when	<i>x</i> =	0.						CC	04 L3	
	e)	Write One-dime	ensional H	leat	flow	equat	tion,	Two	-dime	ensi	onal	Lapla	ace equation.	CC	05 L1	
						•		RT-B					·			
	ļ	Answer <i>fiv</i> e que	stions by	y ch	oosi	ng or	ne q	uesti	on fr	rom	eac	h un	it (5 x 12 = 6	0 Mar	ks)	
													ſ	Marks	CO	BL
								IIT-I								
2.	a)	Find a root of th three decimal pl	•	on x ³	³ – 4x	(– 9	= 0 (using) bise	ectic	n m	ethoc	correct to	6M	CO1	L4
	b)	Find the root of	the equat	tion	x ³ + >	⟨² – 1	= 0	by u	sing l	Itera	ation	meth	nod.	6M	CO1	L4
							0	R								
3.	a)	Find a real root	of the e	quati	on c	osx	= xe	r by	usin	g re	egula	a – fa	llsi method			
		correct to four d	lecimal pl	aces	i.									6M	CO1	L4
	b)	Using Newton-F	Raphson i	meth	od, f	ind a	root	of th	e eq	uati	on 3	x = c	$\cos x + 1$.	6M	CO1	L3
					_			IT-II			_					
4.	a)	Given $Sin 45^0 =$							⁰ =0.	819)2, S	sin60 ^c	$^{0} = 0.8660,$	~~~	000	
	LA	find Sin52 ⁰ , usi	U											6M	CO2	L4
	b)	Find the cubic p		I WN			ine to	-	ing v		es 3	•				
		f(x)	0			1 2		<u>2</u> 1			 1(6M	CO2	L4
							0	R								
5.	a)	Evaluate $f(9)$ k	by using l	_agra	ange	's for	mula	with	the f	follo	wing	g data	a			
		x	5	7		11		13	1	7						
		$f(\mathbf{x})$	150	392		1492	2	366	52	202				6M	CO2	L5
	b)	Find the missing	g term in	the ta	able											
		X Y			3 49.		4 54.		5 -			6 7.4		6M	CO2	L4

	UNIT-III	
6.	Given that	
	x 1.5 2.0 2.5 3.0 3.5 4.0	
	y 3.375 7.0 13.625 24.0 38.875 59.0	
	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.5 and x=4.0	12M CO3 L4
	OR	
7.	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ using	
	i) Trapezoid rule ii) Simpson's 1/3 rd rule and iii) Simpson's 3/8 th rule.	12M CO3 L5
	UNIT-IV	
8.	mplo the Taylor's series method to find an approximate value of y at	
	$x = 0.1, 0.2, 0.3, .4$ for the Differential equation $\frac{dy}{dx} = x^2 - y, y(0) = 1.$	12M CO4 L4
	OR	
9. a)	Using modified Euler's method, find an approximate value of y when $x = 0.2$	
	given that $y^1 = y + e^x$, $y(0) = 0$	6M CO4 L4
b)	Using Runge-kutta fourth order method, Solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1	
	at $x = 0.2$	6M CO4 L3
10.	UNIT-V A string is stretched and fastened to two points <i>l</i> apart. Motion is started by	
	displacing the string in the form $y = a \sin\left(\frac{fx}{l}\right)$ from which it is released at	
	time t=0. Show that the displacement of any point at a distance x from one	
	end at time t is given by $y(x,t) = a \sin\left(\frac{fx}{l}\right) \cos\left(\frac{fct}{l}\right)$	12M CO5 L3
	OR	
11.	Solve the one-dimensional heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ given that	

$$u(0,t)=0$$
, $u(l,t)=0$ and $u(x,0)=3\sin\left(\frac{fx}{l}\right)$, $0 < x < l$
*** End ***

	Hall Ticket Number :														
L	Code: 20A132T			_[J		J			R-20		
	II B.Tech. I Semeste	r Reg	gular &	Sup	plei	men	itary	/ Exc	amir	natio	ons D	Decer	nber 2	023	
			Str	eng											
	Max. Marks: 70				i Ené	gine	enng	3)				Tir	ne: 3 H	ours	
						*****				- 1					
	Note: 1. Question Pape 2. In Part-A, each					-		and H	art-	B)					
	3. Answer ALL the	•						5							
			(0		_	<u>RT-A</u>	4:	- -							
1 1	newor all the following	aa ch	•	omp				-	(5)	(2-	= 10	(1)		со	BL
	nswer <i>all</i> the followir What are elastic con	-			-				`	\ Z =	- 101	vi <i>)</i>			
,	Write in brief about of									nor	te foi	r hoar	me	1 2	1 1
,	What is meant by se			•						•			113.	2	1
,	Write the equations											r carr	vina a		I
	point load 'W' at the								uu	anti		oun	ying a	4	2
•	Enlist the various the													5	2
,						RT-B									
	Answer five question	ns by	choosi	ng or	ne q	uesti	on f	rom	each	uni	t (5 x	12 = 6		-	
					1 1 1 1								Marks	CO	BL
2.	A steel bar of 2	om d	iomoto			IT-I		nath			ubioc	stad			
۷.	to a tension test							•			•				
	was found to be	0.00)54 cm	and	d th	e ch	nang	ge ir	n dia	ame	ter \	was			
	0.00022 cm. Cal					•	,		lus	of E	Elasti	city	12M	1	3
	(ii) Poisson's ratio	Janu	л (III) С	nanç	-	0 R	ium	e.						I	3
3.	A steel rod of 25	mm	diame	ter r	_		hro	uah	a b	rass	s tube	e of			
	25 mm internal d							•							
	on the rod is tigh										-				
	the rod .The tem What are the fir	•									·				
	E _s =200GPa & s														
	E _b =80GPa & b=	0.000)019/°	C									12M	1	3
						IT-II									
4.	A cantilever AB carries a uniform		•												
	span and a poin	•													
	SFD & BMD for t				•		• •						12M	2	3
					C	R									

	Cod	le: 20A13	82T	
5.	An overhanging beam of length 8m, resting over two supports 5m apart at a distance of 1m from left end. The beam carries a UDL of 3.0 kN/m over its entire length. Draw S.F and B.M diagrams and find out the position of contra flexure.	12M	2	3
	UNIT-III			
6.	An I-Section beam 340mmx200mm has a web thickness			
	of 10mm and flange thickness of 20mm. It carries a shear			
	force of 120KN. Sketch the shear stress distribution across			
	the section	12M	3	3
_	OR			
7.	A rolled steel joint of I-Section has the following dimensions. Flange width=250mm, Flange thickness=25mm, Overall depth=600mm; Web thickness=12mm. Calculate the safe UDL per meter length of the beam, if the effective span is 8m and the maximum stress in the steel is 103 N/mm ² .	12M	3	3
	UNIT-IV			
8.	A cantilever of 3m length and of uniform rectangular cross section 150 mm wide and 300 mm deep is loaded with a 30 KN load at its free end. In addition to this it carries a uniformly distributed load of 20 KN/m run over its entire length, calculate: (i) The maximum slope and maximum deflection. (ii) The slope	1014		0
	and deflection at 2 m for the fixed end. Take $E = 210 \text{ GN/m}^2$	12M	4	3
0	OR The cross section of a joint is a restangular section 120mm V			
9.	The cross section of a joist is a rectangular section 120mm X 200mm, with 120mm side horizontal. Sketch the shear stress distribution and hence find the maximum shear stress if it has to resist a shear force of 200KN.	12M	4	3
10.	Determine the resultant stress in magnitude and direction on a			
	plane inclined at 60 [°] to the axis of the major principal stress At a point in a strained material, the principal stresses are 100N/mm ² Tensile and 40 N/mm ² compressive. What is the maximum intensity of shear stress in the material at that point? OR	12M	5	3
11.	Define and explain the following theories of failure:			
	(i) Maximum principal strain theory			
	(ii) Maximum shear strain theory.	12M	5	1
	*** End ***			

Hall Ticket Nu	mhor ·												
Code: 20A131T											R-20		
II B.Tech. I Ser		Regular	& Supp	lement	ary E	xan	nina	tion	s De	ecem	ber 2	2023	3
		A	dvanc		-	ng							
Max. Marks: 70			(Civil E	Inginee	ring)					Time	e:3+		~
Max. Marks. 70			**	******							е. з г	1001	2
Note: 1. Questio 2. In Part-A 3. Answer	, each q	uestion c	arries Tw s in Part- A	o marks	.	d Par	rt-B)						
			(Compul	sory que	stion)								
1. Answer all th	e follow	ring sho	rt answe	er ques	tions		(5)	X 2	= 10	OM)		СО	BL
a) What are the	e differe	nt phas	es of su	rveying)							1	1
b) Define the te	erm line	of colli	mation a	and list	the c	diffe	rent	typ	es c	of ben	nch		
mark												2	1
c) What do me	an by fa	ace left a	and righ	t positi	on in	a th	eod	olite	ins	trume	ent	3	1
d) List the diffe	rence b	etween	EDM ar	nd DEN	1							4	1
Determine th of 200m abo	ve MSL	., if foca	al length <u>P</u>	of cam ART-B	era is	s 20	cm.		-			5	2
Answer five o	luestion	s by cho	osing on	e questi	on fro	m ea	ach u	nit (5 x 1			-	<u> </u>
				UNIT–I						I	Marks	C	O
2. a) The followi traverse:	ng bea	rings w			n run	ninę	gao	com	pas	S			
	Line	Fore E	Bearing	Bac	k Bea	arin	g						
	AB	66	⁰ 15'	2	44 ⁰ 0	0'							
	BC	129	9 ⁰ 45'	3	13 ⁰ 0	0'							
	CD	218	3 ⁰ 30'		37º30)'							
	DA	306	⁶ 45'	1	26º4	5'							
Find the c	orrect f	ore, ba	ck bear	ing an	d tru	e be	earii	ngs	of t	he			
lines, giver	h that th	ne magr	netic de	clinatio	n is 1	1º30)'E				6N	1	1
,		you cc	ontinue	chainir	ng wł	nen	the	fol	lowi	ng			

- A Hill
- , iii) i∨) A Tall building

6M 1 3

6M

6M

6M

6M

6M

6M

6M

6M

1

1

2

2

2

2

3

3

3

3

2

3

2

3

3

2

2

2

- 3. a) Three ships 'P', 'Q' and R started sailing from Cochin at the same time. The speed of all the three ships was the same at 35kmph. The bearing was measured and found to be N 70°E, S60°E and S10°E respectively. After an hour the captain of the ship 'Q' determined the bearing of the other two ships with respect to his own ship and calculated the distances. Calculate the bearings and distances which might have been determined by the captain of ship 'Q'
 - b) Explain the classification of surveying based on purpose and instruments used.

UNIT–II

- 4. a) The reduce level of ground at four points '*A*', '*B*', '*C*' and '*D*' are 54.35, 54.30, 54.20, 54.30m, respectively. A sewer is to be laid so that its invert is 3.048m below the ground at '*A*' and it falls with a uniform gradient of 1 in 400 to '*D*'. The distance '*AB*', '*AC*' and '*AD*' are 35.845, 80.742 and 134.7m respectively. Find the invert and depth of the trench at '*B*', '*C*' and '*D*'.
 - b) Describe briefly how leveling is carried out in the following cases:(i) A small piece of land (ii) A large size land (iii) A borrow pit

OR

- 5. a) The following staff readings were taken with a level 2.65, 3.74, 3.83, 5.27, 4.64, 0.38, 0.96, 1.65, 2.84, 3.48, 3.48, 4.68 and 4.26. The instrument was shifted after 4th, 7th and 10th reading. RL of the starting BM is 525.125m. Enter the reading in the form of level book page and reduce the level by rise and fall / collimation method and apply usual checks.
 - b) A railway embankment is made level for 180 m. the ground has a uniform slope of 1 in 12. The formation width is 9 m and the side slope is 2:1. The ground is level across the c/l of the embankment. Determine the volume of the embankment if the high end terminates vertically.

UNIT-III

- 6. a) Discuss the types of errors can occur in theodolite work, and what methods or techniques are employed to mitigate or eliminate these errors?
 - b) Explain different methods of traversing with neat sketches.

OR

7. a) Illustrate with neat sketches how Graphical and Bowditich's methods are used for adjusting the theodolite traverse survey.6M

b) Two instrument stations were selected 140m apart in the same vertical plane as the object. The vertical angles observed to the two stations were 10°10 and 8°20. The readings on a staff held at a bench mark of RL 250.00m were 2.35 and 1.05m from the stations, the instrument reading being higher for the station farther from the object. Find the RL of the object if the vertical angles were read on mark 4m from the ground.

UNIT-IV

8. a) To determine the elevation of station Q in a tacheometer survey with anallatic lens, the following observations were made with the staff held vertical.

Instrument	H.I	Staff	Vertical	Staff Readings
Station	(m)	Station	Angle	Stall Readings
0	1.55	B.M.	(-) 10 ⁰	1.335, 1.895, 2.460
0	1.55	C.P.	(+) 12 ⁰ 30'	0.780, 1.265, 1.745
Q	1.30	C.P.	(-) 9 ⁰ 30'	1.155, 1.615, 2.075

If R.L of B.M. is 450.555m, calculate R.L of P and find the slope from O to CP and CP to Q

b) Two tangents 'AB' and 'BC' intersect at a point 'B' at chainage 150.5m. Calculate all the necessary data for setting out a circular curve of radius 110m and deflection angle 30^o by the method of offsets from the long chord.

OR

- 9. a) Describe various techniques for addressing challenges encountered when setting out a circular curve
 - b) To determine the gradients between two points 'A' and 'B' a tacheometer was set up at another station 'C' and the following observations were taken keeping the staff vertical.

Staff	Vertical	Stadia readings
at	angle	(m)
A	(+) 4º20'0"	1.300, 1.610, 1.920
В	(+) 0°10'40"	1.100, 1.410, 1.720

If the horizontal angle ABC is $35^{\circ}20'0''$, determine the average gradient between A and B. take 'K' = 100 and 'C'=0

UNIT–V

10. a) Discuss on how does DGPS enhance the accuracy and reliability of location data compared to traditional GPS, and what are some practical applications of DGPS technology in various industries 6M 3

6M

6M

6M

6M

6M

4

4

4

3

3

5

2

6M

6M

5

5

2

2

 b) Explain the use of Total Station technology contribute to ensuring safe alignment in construction and infrastructure projects, and what are the best practices for implementing Total Station-based survey methods for enhanced safety

OR

- a) Explain the key challenges and advancements in ground radar penetration technology, and how does it impact fields such as geology, archaeology, and underground infrastructure assessment?
 b) What advantages do drane based aurious offer in
 - b) What advantages do drone-based surveys offer in maintaining safe alignment in critical infrastructure projects, and how can the integration of drones with surveying technologies improve safety protocols and risk assessment in the construction industry

6M 5 2

*** End ***