	На	Il Ticket Number :			7			
	Cod	de: 20A234T	R-2	0				
		II B.Tech. I Semester Regular Examinations March 2022	2					
	Switching Theory and Logic Design							
	Ma	(Electrical and Electronics Engineering) x. Marks: 70	Time: 3		ro.			
	MQ	X. /MOIKS. / U *******	nine. s		15			
	Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)						
		 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 						
		PART-A						
		(Compulsory question)			Diserse			
	-	1. Answer all the following short answer questions $(5 \times 2 = 10)$	M) (00	Blooms Level			
	a)	Represent +25 and -25 in sign-2's complement representation.	C	01	L1			
	b)	State Demorgan's theorems for three variables	C	02	L1			
	C)	Implement full adder using two half adders.	C	03	L3			
	d)	Compare synchronous and asynchronous sequential circuits	C	04	L2			
	e)	What are the salient features of ASM chart?	C	05	L1			
		PART-B						
	A	nswer <i>five</i> questions by choosing one question from each unit (5 x 12	= 60 Ma	irks)	Diama			
			Marks	СО	Blooms Level			
		UNIT–I						
2.	a)	Convert the following numbers:						
		(i) $(4567)_8$ to base 10.						
		(ii) (11001101.0101) ₂ to base 8 and base 4.						
		(iii) $(53.1575)_{10}$ to base 2.	6M	CO1	L2			
	b)	Explain error correction and error detection codes with	6M					
		examples? OR	OIVI	CO1	L2			
2	2)	_						
3.	a)	What are universal gates? Realize AND, OR, NOT, XOR gates using universal gates.	6M	CO1	L2			
	b)	Prove that OR-AND network is equivalent to NOR-NOR	0111	001	LZ			
	~)	network.	6M	CO1	L2			
		UNIT–II						
4.	a)	Simplify the following Boolean function for minimal SOP form						
	-	using K-map F (W, X, Y, Z) = $m(0, 1, 2, 3, 4, 6, 8, 9, 10, 11)$	6M	CO2	L3			
	b)	What is K-map? State advantages and limitations of K-map?	6M	CO2	L1			
		OR						
5.		Minimize the function using k-map and obtain minimal						
		SOP function? $(1,2,2,4,6,0,40,42,44) + d(5,7,44)$	1014		_			
		F(A,B,C,D) = m(1,2,3,4,6,9,10,12,14) + d(5,7,11).	12M	CO2	L3			

		Co	ode: 20	A234T	
		UNIT–III			
6.	a)	5 5 5	6M	CO3	L4
	b)	Elucidate 4 bit parallel adder with an example	6M	CO3	L5
		OR			
7.	a)	Implement the following Boolean functions using PROM			
		F1= $m(0,1,2,4,6,7)$ F2= $m(0,1,2,4,6)$.	8M	CO3	L3
	b)	Compare between PLA, PAL and ROM	4M	CO3	L3
0	-)	UNIT-IV			
8.	a)		0IVI	CO4	L4
	b)	Explain the operation of twisted ring counter with the help of logic diagram and its timing diagrams.	6M	CO4	L2
		OR	OIVI	004	LZ
9.	a)		6M	COR	L4
0.	b)	Draw the logic diagram of a 4 bit shift counter using	0.VI	OOK	64
	~)	positive edge triggering.	6M	CO4	L1
		UNIT-V			
10.	a)	Compare between Moore and Mealy machine.	6M	CO5	L2
	b)	List the capabilities and limitations of finite state machines.	6M	CO5	L1
		OR			
11.	a)	What are the conditions for the two machines are to be			
		equivalent? For the machine given below, find the			
		equivalence partition and a corresponding reduced			
		machine in standard form.			
		X=0 X=1			
		$\begin{array}{c cc} A & F,0 & B,1 \\ \hline P & C,0 & A,1 \\ \end{array}$			
		$\begin{array}{c c} B & G,0 & A,1 \\ \hline G & D,0 & G,1 \\ \end{array}$			
		C = B,0 = C,1			
		D C,0 B,1			
		\mathbf{E} D,0 A,1			
		\mathbf{F} $\mathbf{E},1$ $\mathbf{F},1$			
		$G \mid E,1 \mid G,1$			
			8M	CO5	L4
	b)	Explain the symbols used in an ASM chart with neat			
		diagrams.	4M	CO5	L2
		*** End ***			

	Hall Ticket Number :				Г			7
	Code: 20AC32T		·			R-2	0	
	II B.Tech. I Semester Regular Exar Transform Techniques & Co (Common to EEE ar Max. Marks: 70	mp	lex Vo			22 Time: 3	Цоли	c
	 Note: 1. Question Paper consists of two parts (Part-A 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Paper A. (Compulsory question) 	art-]	B	B)		nine. J	11001	3
-	1. Answer all the following short answer questions	5	(5X2	2 = 10	OM)		СО	Blooms Level
a)						C	CO1	L4
b)) Evaluate: $L^{-1}\left[\frac{1}{s(s+2)}\right]$					C	02	L3
c)	function $f(x) = x^2$ in the interval $[0, 2f]$.					(03	L1
d)) Evaluate $\int_{C} \frac{1}{z} dz$, where <i>C</i> the circle is $x = 0 \le t \le 2f$.	cc	$\mathbf{ps} t, y$	= s	in <i>t</i> ,	C	04	L2
e)		z – 1	$\frac{z^2}{1(z-2)}$	$(2)^{2}$.		C	05	L4
	PART-B			•				
	Answer <i>five</i> questions by choosing one question	froi	n each	unit (5 x 12	2 = 60 Ma Marks	rks) CO	Blooms
	UNIT–I		e^{-at} –	e^{-bt}		Marks	00	Level
2.	. a) Find the Laplace Transformation of $f(t)$) = -	t			6M	CO1	L3
	b) Show that $\int_{0}^{\infty} e^{-3t} t \sin t dt = \frac{3}{50}$.	2				6M	CO1	L3
3.	a) Find the Laplace Transform of $f(t) = t$ where $f(t+2) = f(t)$.			_		6M	CO1	L1
	b) Find the Laplace Transformation of $f(t)$)=	t sin	^s t.		6M _{Pag}	CO1 ge 1 of	L1 3

Code: 20AC32T

L3

L4

L2

UNIT-II

4. a) Find the inverse Laplace Transformation of

$$F(s) = \frac{3s+1}{(s+1)(s^2+2)}.$$
 12M co2 L3

OR

Solve the differential equation 5.

$$\frac{d^2 y}{dt^2} - 2\frac{dy}{dt} + y = e^t; y(0) = 2; y'(0) = -1$$

by using Laplace Transformation. 12M co2

by using Laplace Transformation.

UNIT-III Find Fourier Cosine and Sine series for the function 6. $f(x) = x - x^2 \text{ in } 0 < x < 1$. 12M CO3

OR

7. a) Find Fourier transform of
$$f(x) = \begin{cases} 1 + \frac{x}{a} & -a < x < 0\\ 1 - \frac{x}{a} & 0 < x < a\\ 0 & otherwise \end{cases}$$
.
6M cos L1

- b) Find the Fourier sine transform of $f(x) = e^{-ax}$, a > 0. 6M CO3 L1 UNIT-IV
- Show that the function $u = e^{-2xy} \sin(x^2 y^2)$ is harmonic. 8. Find the conjugate function v and express u + iv as an analytic function of Z . 12M CO4

OR

Evaluate $\int_{C} \frac{1}{z^2 + 9} dz$ where *c* is 9. (i) |z-3i| = 4 (ii) |z+3i| = 2 (iii) |z| = 5. 12M co4 L2

UNIT–V

10. a) Expand
$$f(z) = \frac{z}{(z+1)(z+2)}$$
 in Taylor series about $z = 2$.
b) State Cauchy Residue theorem and hence evaluate

$$\int_{c} \frac{\sin f z^{2} + \cos f z^{2}}{(z-1)^{2}(z-2)} dz$$
 where the contour c is $|z| = 3$.
OR
11. a) Expand $f(z) = \frac{8z+1}{z(1-z)}$ in a Laurent series valid for
 $0 < |z| < 1$.
OK
11. a) Expand $f(z) = \frac{8z+1}{z(1-z)}$ in a Laurent series valid for
 $0 < |z| < 1$.
OK
OK

*** End ***

 a) List out advantages and disadvantages of negative feedback. CO1 b) Draw the circuit diagram for an integrator. CO2 c) Discuss the significance of RC Active Filters CO3 d) Draw the pin diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any <i>five full</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)	Cod			•]
Analog Electronics (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) Co a) List out advantages and disadvantages of negative feedback. CO1 b) Draw the circuit diagram for an integrator. CO2 c) Discuss the significance of RC Active Filters CO3 d) Draw the pin diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks)) Marks CO UNIT-I 2. 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 OR UNIT-II 4. a) Discuss the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNIT-II 4.		e: 20A233T	R-2	0]
(Electrical and Electronics Engineering) Time: 3 Hours Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) Co a) List out advantages and disadvantages of negative feedback. CO1 b) Draw the circuit diagram for an integrator. CO2 c) Discuss the significance of RC Active Filters CO3 d) Draw the pin diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Marks Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO IUNIT-I 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 OR IUNIT-II 4. a) Discuss the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with		-	2		
Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) Co a) List out advantages and disadvantages of negative feedback. CO1 b) Draw the circuit diagram for an integrator. CO2 c) Discuss the significance of RC Active Filters CO3 d) Draw the circuit diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Marks CO Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 Blo 0R 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 12M co1		•			
 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) CO Bit (Compulsory question) a) List out advantages and disadvantages of negative feedback. CO1 b) Draw the circuit diagram for an integrator. CO2 c) Discuss the significance of RC Active Filters CO3 d) Draw the pin diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO CO Blo Lexplain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 	Max	. Marks: 70	Time: 3	Hours	
(Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) Co Bit a) List out advantages and disadvantages of negative feedback. CO1 b) Draw the circuit diagram for an integrator. CO2 c) Discuss the significance of RC Active Filters CO3 d) Draw the pin diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M CO1 OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M QUIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with	Note	2. In Part-A, each question carries Two mark.			
 a) List out advantages and disadvantages of negative feedback. CO1 b) Draw the circuit diagram for an integrator. CO2 c) Discuss the significance of RC Active Filters CO3 d) Draw the pin diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any <i>five full</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 		(Compulsory question)		00	Blooms
 b) Draw the circuit diagram for an integrator. c) Discuss the significance of RC Active Filters d) Draw the pin diagram of IC 555. e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. PART-B Answer any <i>five full</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Blo UNIT-I 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 			1		Level
 c) Discuss the significance of RC Active Filters d) Draw the pin diagram of IC 555. e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Marks CO Blo Lentro Control CO1 CO1			аск.		
 d) Draw the pin diagram of IC 555. CO4 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Blo Marks CO Blo Marks CO Blo CO1 COR CO1 COR CO1 COR CO1 COR CO1 CO1 COR CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1					
 e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 PART-B Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Le UNIT-I 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 					
PART-B Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I Image: CO 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M 2. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M CO1 Image: CO Image: CO Image: CO Image: CO Image: CO 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M CO1 Image: CO Image: CO Image: CO Image: CO Image: CO 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with Image: CO Image: CO					
Answer any five full questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Bio Marks CO Letter UNITI Image: Co Bio 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 12M co1 2. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M co1 UNITII Image: Co 12M co1 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 12M co1	e			CO	5 L2
 UNIT-I Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. OR Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. UNIT-II A. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 	Ans		= 60 M	arks)	
 2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation. 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 3. UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 			Marks	со	Blooms Level
 diagram and derive the expression for frequency of oscillation. OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 		UNIT–I			
oscillation. 12M _{CO1} OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M _{CO1} UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with					
OR 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 12M _{CO1} UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with			4014		
 3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch. 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 			12IVI	CO1	L2
 its frequency of oscillation with neat sketch. 12M _{CO1} UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with 					
UNIT-II 4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with	•		1014		
4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with				CO1	L2
its drawbacks. Explain the practical differentiator with	a)				
	. u)	•			
		· · ·	9M	CO2	L2
b) Explain about the operational amplifier block diagram? 3M _{CO2}	b)	Explain about the operational amplifier block diagram?	3M	CO2	L2
OR		OR			
5. a) Explain the operation of the instrumentation amplifier? 7M _{CO2}		Explain the operation of the instrumentation amplifier?	7M	CO2	L2
b) Explain the following	. a)				
i) Input offset voltage ii) Input offset current iii) CMRR 5M CO2		Explain the following			

Code:	20A233T
-------	---------

			Joae: 20	A2331	
		UNIT–III			
6.	a)	Explain the working principle and operation of Schmitt	I		
		trigger using Op-Amp with relevant sketch	8M	CO3	L2
	b)	Explain opamp based Half-wave Rectifier	4M	CO3	L2
		OR			
7.		Construct and explain the working principle of a Sawtooth wave generator using Op-amp.	12M	CO3	L2
8.		Explain the operation of 555 Timer as an Astable multivibrator and derive an expression for time period of the output waveform OR		CO4	L2
9.		Discuss the following applications of Monostable mode using 555 timer. i) Missing pulse detector ii) Linear ramp generator		CO4	L2
10.		Explain the operation of Successive Approximation ADC, with relevant functional diagram and its logic circuits.	12M	CO5	L2
11.	a)	Draw the circuit of weighted resistor DAC and derive expression for output-analog voltage.	e 8M	CO5	L2
	b)	What are the specifications of IC AD 574(12 bit ADC)?	4M	CO5	L2

*** End ***

******** Note: 1. Question Paper consists of two parts (Part-A and Part-B)	0 B Hours	
II B.Tech. I Semester Regular Examinations March 2022 Network Analysis and Signals (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Note: 1. Question Paper consists of two parts (Part-A and Part-B)	Hours	
Max. Marks: 70 Time: 3 Note: 1. Question Paper consists of two parts (Part-A and Part-B)	Hours	
 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 	Please	
1. Answer all the following short answer questions $(5 \times 2 = 10M)$ CC	Blooms Level	
a) List the dependent and independent variables of hybrid		
parameters in terms of network parameters.	1 L1	_1
	2 1	1
	3 1	1
	4 1	1
,	5 1	1
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 M	arks)	
	O Bloom	oms
UNIT-I	Leve	vel
2. a) Determine the relation between y and z parameters. 5M	1	3
b) A two port network has the following parameters:		
$Z_{22}=40$, $Z_{11}=30$ and $Y_{12}=0.05$. Calculate		
ABCD parameters. 7M	1	3
OR		
 a) Determine the relation between A, B, C, D and y parameters. 5M 	1	3
 b) Determine the y- parameters of the network shown below: 		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3

	UNIT–II	Code: 2	0A232T	
4. a)	Derive the Laplace transform of sin t.	6M	2	6
b)	Apply Laplace transform concept to R-L series circuit.	6M	2	3
	OR			
5. a)	Derive the Laplace transform of unit ramp function.	6M	2	6
b)	Apply Laplace transform concept to R-C series circuit.	6M	2	3
	UNIT–III			
6.	Analyze the response of series R-L-C circuit when	101/		
	excited by a dc voltage.	12M	3	4
7	OR Analyza the reasonance of parice R L sireuit when			
7.	Analyze the response of series R-L circuit when excited by a sinusoidal voltage.	12M	3	4
			0	т
8.	Explain the classification of continuous time signals.	12M	4	2
	OR			
9. a)	Find the convolution of the following signals			
	$x_1(t)=e^{-3t}u(t)$ and $x_2(t)=u(t)$.	6M	4	2
b)	State the properties of Cross-correlation function.	6M	4	3
	UNIT–V			
10.	Determine the effective value of voltage, current and			
	power and power factor if,			
	$v(t) = 10+6 \cos(50t+450) + 1.8 \cos(150t-100)$ and $i(t) = 3+1.4 \cos(50t+200) + 0.5 \cos 150t$	12M	5	F
	OR		C	5
11.	Explain any four properties of Fourier transforms.	12M	5	2
	*** End ***	. 2101	5	2

	Н	all Ticket Number :			
	C	ode: 20A231T	R-2	0	
		II B.Tech. I Semester Regular Examinations March 202	2		
		Electrical Machines - I			
	٨٨	(Electrical and Electronics Engineering) ax. Marks: 70	Time: 3	Hour	°C
	101	*******	11110.0	1001	5
	No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
		 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
		<u>PART-A</u>			
	_	(Compulsory question)			Blooms
		nswer all the following short answer questions $(5 \times 2 = 10M)$		СО	Level
,		at is the purpose of brushes and bearings in DC machines?		1	1
,		ne critical resistance of a DC machine?	-	2	4
-		at is the significance of separation of losses test on DC machine	es?	3	3
		at is the effect of voltage variation on iron losses?		4	3
		at are the conditions to be satisfied for parallel operation of s	single	-	0
	рпа	se transformers?		5	2
		PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 6	50 Mark	s)	
			Marks	СО	Blooms Level
		UNIT–I			
2.	a)	Derive the EMF equation of a DC generator?	6M	1	1
	b)	Define Commutation and explain the process of commutation			
		in DC generators?	6M	1	1
•		OR			
3.	a)	What is demagnetizing and cross magnetizing effects of armature reaction in a DC machine?		4	4
	h)		6M	1	1
	D)	A 4 pole generator with wave wound aramature has 51 slots each having 48 conductors. The flux per pole is 7.5 mWb. At			
		what speed must the armature be driven to give an induced			
		EMF of 440V?	6M	1	1
		UNIT–II			
4.		Explain the process of building up of a voltage in a DC shunt			
		generator and give the conditions to be satisfied for voltage	12M	4	4
		oR		1	1
5	a)	With neat circuit diagram, explain how the magnetization			
0.	u)	characteristics can be obtained for separately excited DC			
		machine?	8M	2	4
	b)	Distinguish between self-excited and separately excited DC			
		generators?	4M	2	4

		Co	ode: 20A2	231T	
		UNIT–III			
6.	a)	Derive the torque equation of a DC motor?	4M	3	3
	b)	Discuss the different methods of speed control of a DC motor?	8M	1	1
		OR			
7.	a)	Describe Hopkinson's test with the help of a neat circuit diagram to find the efficiency of a DC machine?	6M	3	3
	b)	The Hopkinson's test on two shunt machines gave the following results on full-load.			
		Line voltage=250V;Line current excluding field currents=50A, Motor armature current=380A; Field currents are 5A and			
		4.2A. Assuming resistance of each machine as 0.02,			
		determine the efficiency of each machine?	6M	3	3
		UNIT–IV			
8.	a)	Develop the phasor diagram of a single phase transformer			_
	b)	under no-load condition?	6M	4	3
	D)	Derive the conditions for zero regulation and maximum regulation of a transformer?	6M	4	3
		OR	0111	-	0
9.	a)	With neat circuit diagram explain the parameters obtained			
-	- 7	from Open Circuit test and Short Circuit test?	6M	4	3
	b)	A 40 KVA single phase transformer has iron losses of 800 W			
		and copper losses of 1140 W when supplying it's full load at			
		unity power factor. Calculate the efficiency of the transformer			
		at unity power factor at i) Full load ii) Half load	6M	4	3
10	\sim	UNIT-V Derive an expression for solving of conductor material in an			
10.	a)	Derive an expression for saving of conductor material in an auto transformer over a two winding transformer of equal			
		rating?	6M	4	3
	b)	Explain with the help of connection and phasor diagrams,			
	-	how Scott connections are used to obtain two phase supply			
		from three phase supply mains?	6M	5	2
		OR			
11.	a)	Two single phase transformers are operating in parallel.			
		Derive an expression for the current drawn by each, sharing a	614	F	2
	ل ا	common load, when no-load voltages of these are not equal?	6M 6M	5	2
	b)	Compare two winding transformer with an auto transformer.	UIVI	5	2