Code: 20A234T

II B.Tech. I Semester Regular Examinations March 2022
Switching Theory and Logic Design
(Electrical and Electronics Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad$ CO $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Represent +25 and -25 in sign-2's complement representation. CO1 L1
b) State Demorgan's theorems for three variables CO 2 L 1
c) Implement full adder using two half adders. CO L3
d) Compare synchronous and asynchronous sequential circuits CO4 L2
e) What are the salient features of ASM chart? CO5

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Convert the following numbers:
(i) $(4567)_{8}$ to base 10.
(ii) $(11001101.0101)_{2}$ to base 8 and base 4 .
(iii) $(53.1575)_{10}$ to base 2 .

6M co1 L2
b) Explain error correction and error detection codes with examples?

6M CO1 L2

OR

3. a) What are universal gates? Realize AND, OR, NOT, XOR gates using universal gates.

6M co1 L2
b) Prove that OR-AND network is equivalent to NOR-NOR network.

6 M co1 L 2

UNIT-II

4. a) Simplify the following Boolean function for minimal SOP form using K-map $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(0,1,2,3,4,6,8,9,10,11)$

6M Co2
b) What is K-map? State advantages and limitations of K-map?
$6 \mathrm{M} \mathrm{Co2}$

OR

5. Minimize the function using k-map and obtain minimal SOP function?
$F(A, B, C, D)=\Sigma m(1,2,3,4,6,9,10,12,14)+\mathbf{d}(5,7,11)$.
12M CO2

UNIT-III

6. a) Design 2×4 decoder using NAND gates.
b) Elucidate 4 bit parallel adder with an example

6M CO3

OR
7. a) Implement the following Boolean functions using PROM

$$
\mathrm{F} 1=\Sigma \mathrm{m}(0,1,2,4,6,7) \mathrm{F} 2=\Sigma \mathrm{m}(0,1,2,4,6) .
$$

8M co3
b) Compare between PLA, PAL and ROM
$4 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 3$

UNIT-IV

8. a) Draw the logic symbols and truth tables of JK and T flip flop
b) Explain the operation of twisted ring counter with the help of logic diagram and its timing diagrams.

6 M CO4 L2

OR

9. a) Design a Mod -6 synchronous counter using JK Flip-Flop?
b) Draw the logic diagram of a 4 bit shift counter using positive edge triggering.

UNIT-V

10. a) Compare between Moore and Mealy machine.
b) List the capabilities and limitations of finite state machines.

OR

11. a) What are the conditions for the two machines are to be equivalent? For the machine given below, find the equivalence partition and a corresponding reduced machine in standard form.

PS	NS,Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{~F}, 0$	$\mathrm{~B}, 1$
B	$\mathrm{G}, 0$	$\mathrm{~A}, 1$
C	$\mathrm{B}, 0$	$\mathrm{C}, 1$
D	$\mathrm{C}, 0$	$\mathrm{~B}, 1$
E	$\mathrm{D}, 0$	$\mathrm{~A}, 1$
F	$\mathrm{E}, 1$	$\mathrm{~F}, 1$
G	$\mathrm{E}, 1$	$\mathrm{G}, 1$

b) Explain the symbols used in an ASM chart with neat diagrams.
\square
Code: 20AC32T
II B.Tech. I Semester Regular Examinations March 2022
Transform Techniques \& Complex Variables
(Common to EEE and ECE)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions
a) Find $L[\sin 3 t \cos 2 t]$
b) Evaluate: $L^{-1}\left[\frac{1}{s(s+2)}\right]$
c) Find the Fourier coefficient a_{n} of the Fourier series expansion for the function $f(x)=x^{2}$ in the interval $[0,2 \pi]$.
d) Evaluate $\int_{C} \frac{1}{z} d z$, where C the circle is $x=\cos t, y=\sin t$,

$$
0 \leq t \leq 2 \pi .
$$

e) Find the poles and residues of the function $\frac{z^{2}}{(z-1)(z-2)^{2}}$.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO

UNIT-I

2. a) Find the Laplace Transformation of $f(t)=\frac{e^{-a t}-e^{-b t}}{t}$.
b) Show that $\int_{0}^{\infty} e^{-3 t} t \sin t d t=\frac{3}{50}$.

6M co1
3. a) Find the Laplace Transform of $f(t)=t^{2}, 0<t<2$ where $f(t+2)=f(t)$.

6M co1
b) Find the Laplace Transformation of $f(t)=t \sin ^{3} t$.

UNIT-II

4. a) Find the inverse Laplace Transformation of

$$
F(s)=\frac{3 s+1}{(s+1)\left(s^{2}+2\right)} .
$$

OR

5. Solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y=e^{t} ; y(0)=2 ; y^{\prime}(0)=-1
$$

by using Laplace Transformation.
12M co2

UNIT-III

6. Find Fourier Cosine and Sine series for the function $f(x)=x-x^{2}$ in $0<x<1$.

OR

7. a) Find Fourier transform of $f(x)=\left\{\begin{array}{ll}1+\frac{x}{a} & -a<x<0 \\ 1-\frac{x}{a} & 0<x<a \\ 0 & \text { otherwise }\end{array}\right.$.

6M co3
b) Find the Fourier sine transform of $f(x)=e^{-a x}, a>0$.

6M co3

UNIT-IV

8. Show that the function $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is harmonic. Find the conjugate function v and express $u+i v$ as an analytic function of Z.

12M co4

OR

9. Evaluate $\int_{C} \frac{1}{z^{2}+9} d z$ where c is
(i) $|z-3 i|=4$
(ii) $|z+3 i|=2$
(iii) $|z|=5$.
12M co4

UNIT-V

10. a) Expand $f(z)=\frac{z}{(z+1)(z+2)}$ in Taylor series about $z=2$.

6M cos
b) State Cauchy Residue theorem and hence evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where the contour C is $|z|=3$.

OR

11. a) Expand $f(z)=\frac{8 z+1}{z(1-z)}$ in a Laurent series valid for $0<|z|<1$.
b) State Cauchy Residue theorem and hence evaluate $\int_{C} \frac{1}{(z-1)(z+2)^{2}} d z$ where the contour C is
(i) $|z|=\frac{3}{2}$
(ii) $|z|=3$.

6M cos

Code: 20A233T

|| B.Tech. I Semester Regular Examinations March 2022

Analog Electronics

(Electrical and Electronics Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) co Blooms
a) List out advantages and disadvantages of negative feedback. CO1 L2
b) Draw the circuit diagram for an integrator. CO2 L2
c) Discuss the significance of RC Active Filters $\mathrm{CO} \quad \mathrm{L} 2$
d) Draw the pin diagram of IC 555 CO4 L2
e) Draw the circuit diagram of 3-bit R-2R Ladder DAC. CO5 L2

PART-B
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Explain the circuit diagram of Hartley oscillator with a neat diagram and derive the expression for frequency of oscillation.

OR

3. Explain the operation of wien bridge oscillator and derive its frequency of oscillation with neat sketch.

12M co1

UNIT-II

4. a) Discuss the operation of ideal differentiator and mention its drawbacks. Explain the practical differentiator with relevant sketches.

9M co2 L2
b) Explain about the operational amplifier block diagram? 3 M co2 L 2

OR

5. a) Explain the operation of the instrumentation amplifier? 7M coz L2
b) Explain the following
i) Input offset voltage ii) Input offset current iii) CMRR 5M cor L2

UNIT-III

6. a) Explain the working principle and operation of Schmitt trigger using Op-Amp with relevant sketch

8M cos
b) Explain opamp based Half-wave Rectifier

4 M cos

OR

7. Construct and explain the working principle of a Sawtooth wave generator using Op-amp.

12M cos

UNIT-IV

8. Explain the operation of 555 Timer as an Astable multivibrator and derive an expression for time period of the output waveform

12M co4 L2

OR

9. Discuss the following applications of Monostable mode using 555 timer. i) Missing pulse detector ii) Linear ramp generator

12M co4 L2

UNIT-V

10. Explain the operation of Successive Approximation ADC, with relevant functional diagram and its logic circuits.

12M cos

OR

11. a) Draw the circuit of weighted resistor DAC and derive expression for output-analog voltage.

8M cos
b) What are the specifications of IC AD 574(12 bit ADC)? 4M co5 L2

Hall Ticket Number: \square
Code: 20A232T
II B.Tech. I Semester Regular Examinations March 2022

Network Analysis and Signals

(Electrical and Electronics Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{co} \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) List the dependent and independent variables of hybrid parameters in terms of network parameters. 1 L1
b) State initial value theorem. 21
c) Define the role of initial conditions in transients. $\quad 3 \quad 1$
d) Define unit signum function. 4
e) Define even function symmetry. $\quad 5 \quad 1$

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)

UNIT-I

2. a) Determine the relation between y and z parameters.

5M 1
b) A two port network has the following parameters:
$Z_{22}=40 \quad, Z_{11}=30 \quad$ and $Y_{12}=0.05 \quad$. Calculate
ABCD parameters. 7M 1

OR

3. a) Determine the relation between A, B, C, D and y parameters.
b) Determine the y-parameters of the network shown below:

\square
Code: 20A231T
II B.Tech. I Semester Regular Examinations March 2022
Electrical Machines - I
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
4. In Part-A, each question carries Two mark.
5. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$)
a) What is the purpose of brushes and bearings in DC machines?
b) Define critical resistance of a DC machine?
c) What is the significance of separation of losses test on DC machines?
d) What is the effect of voltage variation on iron losses?

4
e) What are the conditions to be satisfied for parallel operation of single phase transformers?

PART-B

OR

3. a) What is demagnetizing and cross magnetizing effects of armature reaction in a DC machine?

6M 1
Blooms
Level

$$
\text { Answer five questions by choosing one question from each unit (} 5 \times 12=60 \text { Marks) }
$$

UNIT-I
b) Define Commutation and explain the process of commutation in DC generators?
b) A 4 pole generator with wave wound aramature has 51 slots each having 48 conductors. The flux per pole is 7.5 mWb . At what speed must the armature be driven to give an induced EMF of 440 V ?

6M 1

UNIT-II

4. Explain the process of building up of a voltage in a DC shunt generator and give the conditions to be satisfied for voltage build up?

OR

5. a) With neat circuit diagram, explain how the magnetization characteristics can be obtained for separately excited DC machine?

8M 2
b) Distinguish between self-excited and separately excited DC generators?

4M 2
UNIT-III6. a) Derive the torque equation of a DC motor?
b) Discuss the different methods of speed control of a DC motor?

OR

7. a) Describe Hopkinson's test with the help of a neat circuit diagram to find the efficiency of a DC machine?
b) The Hopkinson's test on two shunt machines gave the following results on full-load.
Line voltage $=250 \mathrm{~V}$;Line current excluding field currents=50A, Motor armature current=380A; Field currents are 5 A and 4.2A. Assuming resistance of each machine as 0.02 , determine the efficiency of each machine?

UNIT-IV

8. a) Develop the phasor diagram of a single phase transformer under no-load condition?
b) Derive the conditions for zero regulation and maximum regulation of a transformer?

OR

9. a) With neat circuit diagram explain the parameters obtained from Open Circuit test and Short Circuit test?
b) A 40 KVA single phase transformer has iron losses of 800 W and copper losses of 1140 W when supplying it's full load at unity power factor. Calculate the efficiency of the transformer at unity power factor at i) Full load
ii) Half load
6M 4
3
6M 43

UNIT-V

10. a) Derive an expression for saving of conductor material in an
11. a) Derive an expression for saving of conductor material in an
auto transformer over a two winding transformer of equal rating?
b) Explain with the help of connection and phasor diagrams, how Scott connections are used to obtain two phase supply from three phase supply mains?
$6 \mathrm{M} \quad 4$
3
6M 4
3

OR

11. a) Two single phase transformers are operating in parallel. Derive an expression for the current drawn by each, sharing a common load, when no-load voltages of these are not equal?
6M $5 \quad 2$
b) Compare two winding transformer with an auto transformer.
