\square
Code: 20A231T
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023
Electrical Machines - I
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Define Commutation and list out the methods of improving
commutation
b) Classify the DC Generators $\quad 2 \mathrm{~L} 2$
c) Why the starter is required for DC Motor? Justify 3 L2
d) Define Regulation of Transformer 4 L2
e) Write the necessary and sufficient conditions for parallel operation of
transformer.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) How are the de-magnetizing and Cross-magnetizing ampereTurns/pole in DC Machines are calculated?

6M 1 L2
b) A 500 V , wave-wound 750 rpm shunt generator supplies a load current of 195A.The armature has 720 conductors and shunt field resistance is 100 . Find the de-magnetizing ampere-Turns/pole, if the brushes are advanced through 3 segments at this load. Also calculate the extra shunt field turns required to neutralize this demagnetization.

OR

3. a) Explain the Armature reaction and its effects in DC Machine $\quad 6 \mathrm{M} \quad 1 \quad \mathrm{~L} 2$
b) What is commutation? Discuss the methods of improving commutation in DC machines

UNIT-II

4. Discuss the internal and external characteristics of DC shunt generator

12M 2 L2
OR
5. The following data pertains to the magnetization curve of a DCShunt generator at 300 rpm

I_{F} in Amps:	0	0.2	0.3	0.4	0.5	0.6	0.7	0.8
E_{G} in Volts:	7.5	93	135	165	186	202	215	230

The field resistance of the machine is adjusted to 354.5 and the speed is 300 rpm . For this generator,
a) Determine the no load generated voltage
b) Determine the critical value of the shunt field resistance
c) Determine the critical speed for the given shunt field resistance

UNIT-III

6. a) Explain in detail about the Losses and Efficiency of a DC Machine
b) A 4-pole, lap wound DC motor has 540 conductors. Its speed is found to be 1000 rpm .the flux per pole is 25 mwb . It is connected to 230 Volts dc supply. Ra is 0.8 . Calculate induced emf and armature current.

6M 3 L3

OR

7. Briefly explain different speed control methods in DC-Shunt Motors?

12M 3 L3

UNIT-IV

8. a) With neat diagram Explain the working principle of transformer 6M 4 L2
b) Explain the constructional details of a single-phase transformer
6M 4 L2 OR
9. a) Explain Sumpner's test on single phase transformer

6M 4 L2
b) Obtain the equivalent circuit of a $200 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$, 1 -phase transformer from the following test data:
OC test: $200 \mathrm{~V}, 0.7 \mathrm{~A}, 70 \mathrm{~W}$ - on LV side
SC test: 15V, 10A, 85W - on HV side.
Calculate the equivalent circuit parameters and show them on equivalent circuit.

6M 4 L3

UNIT-V

10. Explain in detail about Parallel operation of Transformers OR
11. Discuss various types of connections used for Three Phase transformers.

12M 5 L3
\square
Code: 20A232T
II B.Tech. I Semester Regular \& Supplementary Examinations December 2023

Network Analysis and Signals

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 X 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Write the general equations of Z and Y parameters. CO1 L1
b) What is the Laplace transform of $\mathrm{f}(\mathrm{t})=\mathrm{t} \operatorname{Sin} 2 \mathrm{t}$? CO3 L1
c) Define time constant of RL and RC series circuit. CO2 L1
d) List out the types of discrete time Signals. CO4 L1
e) What is Periodic Function? CO5 L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Find the ABCD and h - parameters for the following circuit and verify the network is reciprocal or not.

$12 \mathrm{M} \mathrm{CO1} \mathrm{L3}$
OR
3. Find the Z and Y parameters for the following circuit and verify the network is symmetrical or not.

12M CO1 L3
4. Find the initial value and final value of the signal corresponding to the Laplace transform.
$Y(S)=(S+1) / S(S+2)$
12 M CO3 L4

5. A 1 k resistor is in series with a 500 mH inductor. This series combination is in parallel with a 0.4 F capacitor. Express the equivalent s-domain impedance of these parallel branches as a rational functional.
 12M CO3 L4

UNIT-III

6. Derive the transient response of an RLC circuit with AC excitation.

12M CO2 L4

OR

7. A series RC circuit consists of resistor of 10 and capacitor of 0.1 F has a constant voltage of 20 v is applied to the circuit at $t=0.0 b t a i n$ the current equation. Determine the voltage across the resistor and the capacitor.

12M CO2 L4
UNIT-IV
8. a) Find the convolution of the following signals
$x_{1}(t)=e^{-3 t} u(t)$ and $x_{2}(t)=u(t+3)$.
6M CO4 L3
b) State and prove properties of Cross-correlation function.

6 M CO 4 L 3 OR
9. a) What is the periodicity of the signal $x(t)=\sin 100 \pi t+\cos$ 150 пt?
b) What are the basic continuous time signals? Draw any four Waveforms and write their equations.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

UNIT-V

10. a) Explain the properties of Fourier Transform.

6 M CO5 L2
b) Determine the effective value of voltage, current and power if,
$v(t)=10+6 \cos \left(50 t+45^{\circ}\right)+1.8 \cos \left(150 t-10^{\circ}\right)$ and
$i(t)=3+1.4 \cos \left(50 t+20^{\circ}\right)+0.5 \cos 150 t$
6 M CO5 L3
OR
11. a) Explain even, odd and half wave symmetry property by using relevant examples.
b) Express the Trigonometric Fourier series expansion of the square waveform.
$6 \mathrm{M} \mathrm{CO5}$ L2

6 M CO5 L3
\square
Code: 20A234T
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023

Switching Theory and Logic Design

(Electrical and Electronics Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{co} \quad \mathrm{BL}$
a) List the universal gates. $\mathrm{CO1}$ L1
b) Distinguish between 1's and 2's complement. CO2 L2
c) Compare the PLAs. CO 3 L 1
d) Denote the characteristic table of JK flipflop. CO4 L1
e) Specify the conditional output box. CO5 L2 PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks) Marks CO BL

UNIT-I

2. a) Convert the following binary number to decimal, octal and hexadecimal number system. (1101.11)2

6M CO1 L3
b) Test the following Hamming code for a 4-bit message and correct it if necessary 1110 and 1011.

6M CO1 L3

OR

3. a) Convert the following into decimal :
(i) $(110011101)_{2}$
(ii) $(246)_{8}$
(iii) $(E E E)_{16}$
$6 \mathrm{M} \mathrm{CO1}$ L3
b) Subtract the decimal number $\left(75_{10}-27_{10}\right)$ using 2 's complement arithmetic.

6M CO1 L3

UNIT-II

4. a) Simplify the following Boolean functions using k maps $F(w, x, y, z)=\sum m(3,7,11,13,14,15)$

6 M CO2 L3
b) Implement the function $F=B^{\prime} D+A C$ using only NAND gates.
$6 \mathrm{M} \mathrm{CO2}$ L4

OR

5. a) Simplify the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum-of-minterms form:
$\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(5,6,7,12,14,15)+\mathrm{d}\left(\sum \mathrm{m}(3,9,11)\right) \quad 8 \mathrm{M}$ co2 L3
b) Implement the NOT gate using NAND gate.

4M CO2 L4
UNIT-III
6. a) Implement full adder circuit using 3X8 Decoder.

6M CO3 L5
b) Elucidate 4 bit parallel adder with an example
$6 \mathrm{M} \mathrm{CO3}$ L3

OR

7. Consider the following boolean functions and implement the circuit using PAL. $\mathrm{W}=\Sigma(2,12,13)$
$X=\sum(7,8,9,10,11,12,13,14,15)$
$Y=\Sigma(0,2,3,4,5,6,7,8,10,11,15)$
$12 \mathrm{M} \mathrm{CO3} \mathrm{~L} 3$
UNIT-IV
8. a) Draw the logic symbols and truth tables of JK and T flip flop
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
b) Explain the operation of twisted ring counter with the help of logic diagram and its timing diagrams.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$

OR

9. a) Design and explain the working of a Johnson counter with example.

8M CO4 L3
b) Analyze the characteristic table and excitation table of D flipflop.

4M CO4 L4

UNIT-V

10. Draw the state diagram, state table, and ASM chart for a
2-bit binany counter having one enable line E such that
$E=1$ counting enabled, and $E=0$ counting disabled.
$12 M \quad \cos \quad L 5$ OR
11. a) Compare between Moore and Mealy machine. 6M CO5 L5
b) Discuss the various blocks of ASM chart.
$6 M_{C O 5}^{L 4}$

Hall Ticket Number : \square
Code: 20AC32T
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023 Transform Techniques \& Complex Variables
(Common to EEE \&ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions (5 X $2=10 \mathrm{M}$)
a) Find the Laplace transform of $\sin 2$
b) Find the inverse Laplace transforms of $\frac{\mathrm{S}^{2}}{\left(\frac{s^{2}}{s-2)^{3}}\right.}$
c) Write the Dirichlet's conditions.
d) If $w=\log z$, find $\frac{\substack{\text { le } \\ \frac{z}{d z}}}{\substack{2}}$
e) Find the nature and location of singularities of the function $=\frac{\sin z}{z}$

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

6M CO1 L3
b) Find the Laplace transform of the function

$$
\begin{array}{cl}
f(t)=\sin \omega t, & 0<t<\pi / \omega \\
0 & , \pi / \omega<t<2 \pi / \omega
\end{array}
$$

3. a) Find the Laplace transform of $\frac{e^{2} \cos a t}{-\frac{\cos b t}{t}}$

6 M CO1 L1
b) Find the Laplace transforms of tsinat
$6 \mathrm{M} \mathrm{CO1} \mathrm{~L} 1$
4. Find the inverse transforms of $\frac{\text { UNIT-II }}{\frac{(\mathbf{T}-11}{(s-1)-1}\left(s^{5}+3+2 s+5\right)}$

12M CO2 L3
OR
5. Solve $\left(D^{3}-3 D^{2}+3 D-1\right) y=t^{2} e^{t}$
given that $y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2$.

UNIT-III

6. If $f(x)=|\cos x|$, expand expand $f(x)$ as a fourier series in the interval $(-\pi, \pi)$.

12M CO3 L4

OR

7. Find the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}1-2 & 1 \\ 0, i_{x \mid} \mid>1\end{array}\right\}$

1: 12M CO3

UNIT-IV

8. Evaluate, using Cauchy's integral formula: $\int_{c}{ }_{\sum^{2} \frac{2}{2} \frac{\pi z}{-1} d z}$ around a rectangle with vertices $2 \pm i,-2 \pm i$.
$12 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

OR

9. Find the orthogonal trajectories of the family of curves $x^{4}+y^{4}-6 x^{2} y^{2}=$ constant.

12M CO4 L3

UNIT-V

10. Find the Taylor's expansion of $f(z)=\frac{z^{3}}{z^{3}+z}+\frac{1}{2}$ about $z=i$.

12 M CO5 L3

OR

טா
11. Find the residue of $f(z)=\frac{z^{3}}{(z-1)^{4}(z-2) \frac{(z-3)}{}}$ at its poles and hence evaluate $\dot{f}_{c} f(z) d z$ where ζ is the circle $|z|=2.5 \quad 12 \mathrm{M} \quad$ CO5 \quad L2 ${ }_{* * * *}^{* * *}$ End ${ }^{* * *}$
\square
Code: 20A233T
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023

Analog Electronics

(Electrical and Electronics Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) What are the components of feedback amplifier? 1 L1
b) Define CMRR of an op-amp. 2 L1
c) Draw the circuit of peak value Detector using op-amp 3 L2
d) What are the basic building blocks of PLL? 4 L1
e) Which is the fastest ADC and why? 5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

OR

3. a) Show that the bandwidth increases in negative feedback
amplifiers.
b) Draw the circuit diagram of RC-phase shift oscillator using BJT and derive the expression for frequency of oscillations.
4. a) Explain how an op-amp can be used as integrator? Also derive expression for the output.
6M 2 L3
b) Design inverting amplifier with $R_{1}=5 \mathrm{~K}, \mathrm{R}_{\mathrm{F}}=20 \mathrm{~K}, \mathrm{~V}_{\mathrm{i}}=1 \mathrm{~V}$. A load of 5 K is connected to the output terminal. Calculate (i) $A_{c L}$ (ii) V_{0} (iii) I_{I} and total current I_{0} into the output pin. $6 \mathrm{M} \quad 2 \mathrm{~L} 3$

OR

5. a) Explain the operation of I-V converter. 6M $\quad 2 \quad \mathrm{~L} 2$
b) Explain non inverting op-amp with neat circuit diagram and derive the expression for output voltage
6M 2 L3
UNIT-III
6. a) An op-amp multivibrator circuit is constructed using the following components. $\mathrm{R} 1=35 \mathrm{k}, \mathrm{R} 2=30 \mathrm{k}, \mathrm{R}=50 \mathrm{k}$ and $\mathrm{C}=0.01 \mathrm{uF}$. Calculate the circuits frequency of oscillation. $\quad 6 \mathrm{M} \quad 3 \quad \mathrm{~L} 3$
b) Design a first order high pass filter for a high cut-off frequency of 2 kHz and Pass band gain of 2 6M 3 L3
OR
7. Explain the working principle and operation of Astable Multi- vibrator using Op-Amp with relevant sketch. 12M 3 L3
UNIT-IV8. Derive the Expression for time period of Monostable MVusing 555 Timer with relevant waveforms.12M 4 L3
OR
8. a) Draw the block diagram of 555 timer and explain function of each pin of 555 timer6M 4 L2
b) Derive an expression for Capture Range of PLL. 6M 4 L3
UNIT-V
9. Explain the working principle of Successive approximationADC with a neat diagram.12M 5 L2
OR
10. a) Find the output voltage of a 4-bit binary weighted resistorDAC with following inputs, $R=R_{f}=1 \mathrm{~K}$ and $V_{R}=+8 \mathrm{~V}$.
(i) 1001 (ii) 1100 6M 5 L3b) Obtain an expression for the output voltage of R-2R DAC. $6 \mathrm{M} \quad 5 \quad \mathrm{~L} 3$*** End ***
