F	Hall Ticket Number :			
Co	ode: 20A231T	R-20		
	3.Tech. I Semester Regular & Supplementary Examinations Dec	ember 20:	23	
	Electrical Machines - I			
٨.٨.	(Electrical and Electronics Engineering) ax. Marks: 70	Time: 3 Ho		
1010	ux. /viuiks. / U *******	ппе. з по	015	
No	te: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks.			
	 Answer ALL the questions in Part-A and Part-B PART-A 			
	(Compulsory question)			
1. An	swer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	С	ю в	L
a) D	efine Commutation and list out the methods of improving			
C	ommutation		1 L	.2
b) C	lassify the DC Generators		2 L	.2
c) V	Vhy the starter is required for DC Motor? Justify		3 L	.2
	efine Regulation of Transformer		4 L	.2
	Vrite the necessary and sufficient conditions for parallel operations	ation of	- .	_
tr	ansformer. PART-B		5 L	2
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 6$	60 Marks)		
		Marks	СО	BL
a)	UNIT-I			
2. a)	How are the de-magnetizing and Cross-magnetizing amper			
	Turns/pole in DC Machines are calculated?	6M	1	L2
b)	A 500V, wave-wound 750rpm shunt generator supplies a loa			
	current of 195A. The armature has 720 conductors and shunt field the democratizing even are Turne (
	resistance is 100 . Find the de-magnetizing ampere-Turns/po			
	if the brushes are advanced through 3 segments at this load. Al calculate the extra shunt field turns required to neutralize the			
	demagnetization.	6M	1	L2
	OR	0		LZ
3. a)	Explain the Armature reaction and its effects in DC Machine	6M	1	L2
,			I	LZ
b)	What is commutation? Discuss the methods of improving commutation in DC machines	6M	1	L2
	UNIT-II		I	LZ
4.	Discuss the internal and external characteristics of DC shu	int		
т.	generator	12M	2	L2
	OR		2	

OR

5. The following data pertains to the magnetization curve of a DC-Shunt generator at 300rpm

	Shunt generator	at 300rpn)						-			
	I _F in Amps:	0 0.2	0.3	0.4	0.5	0.6	0.7	0.8				
	E _G in Volts:	7.5 93	135	165	186	202	215	230	-			
	The field resistar	nce of the	mach	nine is	adju	sted t	o 354	l.5 a	and			
	the speed is 300	rpm. For t	his gei	nerato	or,							
	a) Determine the											
	b) Determine thec) Determine the							nce				
	resistance	entical sp			jivent	mant				12M	2	L3
			U	NIT-II	I							
6. a)	•	l about t	he Lo	sses	and	Efficie	ency o	of a	DC			
	Machine									6M	3	L2
b)	1 7 1							-				
	found to be 1000	•	•	•								
	to 230 Volts dc s armature current		a 15 0.0	5.0	aicula		uceu	enna	anu	6M	3	L3
		•		OR						OW	5	LJ
7.	Briefly explain c	lifferent s	peed		ol me	thods	in D)C-Sh	unt			
	Motors?		pood	oonn		lineae		0 011	Gint	12M	3	L3
			U	NIT-I\	/							
8. a)	With neat diagra	m Explain	the w	orking	princ	iple o	f trans	sform	er	6M	4	L2
b)	Explain the const	tructional	details	ofas	single	-phas	e tran	sform	ner	6M	4	L2
				OR								
9. a)	Explain Sumpner	r's test on	single	phas	e tran	sform	er.			6M	4	L2
b)	Obtain the equiv	alent ciro	cuit of	a 20	0/400	V, 50	Hz, ´	I-pha	se			
	transformer from		U									
	OC test: 200V, 0											
	SC test: 15V, 10						<i>1</i>					
	Calculate the equivalent circuit		rcuit p	aram	eters	and s	now t	nem (on	6M	1	L3
	equivalent circuit	•		NIT-V	/					OIVI	4	LS
10.	Explain in detai	l about P				of T	ransf	orme	rs	12M	5	L4
-				OR							-	
11.	Discuss various	types of	conne	-	s use	d for	Thre	e Pha	ase			
	transformers.	<i>/</i>								12M	5	L3
			***	۲۰۰۰ *۲	**							

*** End ***

Code: 20A232T	R-20
II B.Tech. I Semester Regular & Supplementary Examinatio	ns December 2023
Network Analysis and Signals	
(Electrical and Electronics Engineering)	T
Max. Marks: 70 ********	Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
2. In Part-A, each question carries Two marks.	
 Answer ALL the questions in Part-A and Part-B PART-A 	
(Compulsory question)	
1. Answer <i>all</i> the following short answer questions (5 X 2	= 10М) со ві
 a) Write the general equations of Z and Y parameters. 	CO1 L1
b) What is the Laplace transform of $f(t) = t Sin 2t$?	CO3 L1
c) Define time constant of RL and RC series circuit.	CO2 L1
 d) List out the types of discrete time Signals. 	CO4 L1
e) What is Periodic Function?	CO5 L1
PART-B	
Answer <i>five</i> questions by choosing one question from each unit (5	x 12 = 60 Marks)
	Marks CO
UNIT-I	
Find the ABCD and h - parameters for the following	circuit
and verify the network is reciprocal or not.	
10Ω	
° į ^{ww} į °	
ξ6Ω ξ5Ω	
o c	12M co1
OR	
Find the Z and Y parameters for the following circu	uit and
verify the network is symmetrical or not.	

Y(S) = (S+1) / S(S+2)

4.

12M CO3 L4

		Code: 20A232T				
5.		A 1k resistor is in series with a 500mH inductor. This series combination is in parallel with a 0.4μ F capacitor. Express the equivalent s-domain impedance of these				
		parallel branches as a rational functional. UNIT-III	12M	CO3	L4	
6.		Derive the transient response of an RLC circuit with AC excitation.	12M	CO2	L4	
		OR				
7.		A series RC circuit consists of resistor of 10 and capacitor of 0.1F has a constant voltage of 20v is applied to the circuit at t=0.obtain the current equation. Determine the voltage across the resistor and the \dot{x}	4014			
		capacitor.	12M	CO2	L4	
8	a)	UNIT-IV Find the convolution of the following signals				
0.	α,	$x_1(t) = e^{-3t}u(t)$ and $x_2(t) = u(t+3)$.	6M	CO4	L3	
	b)	State and prove properties of Cross-correlation function.		CO4		
		OR				
9.	a)	What is the periodicity of the signal $x(t) = sin 100 t + cos$				
		150 t?	6M	CO4	L2	
	b)	What are the basic continuous time signals? Draw any four Waveforms and write their equations.	6M	CO4	L2	
10	2)	UNIT-V Explain the properties of Fourier Transform.	6M	CO5	10	
	b)		OW	005	LZ	
		$v(t) = 10+6 \cos(50t+45^{\circ}) + 1.8 \cos(150t-10^{\circ})$ and $i(t) = 3+1.4 \cos(50t+20^{\circ}) + 0.5 \cos 150t$	6M	CO5	L3	
		OR				
11.	a)	Explain even, odd and half wave symmetry property by using relevant examples.	6M	CO5	L2	
	b)	Express the Trigonometric Fourier series expansion of the square waveform.	6M	CO5	L3	
		*** End ***				

Page **2** of **2**

Hall Ticket Number :	
Code: 20A234T	R-20
II B.Tech. I Semester Regular & Supplementary Examinations Dece Switching Theory and Logic Design	əmber 2023
(Electrical and Electronics Engineering) Max. Marks: 70	Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 	
PART-A	
(Compulsory question)	
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	
a) List the universal gates.	CO1 L1
b) Distinguish between 1's and 2's complement.	CO2 L2
c) Compare the PLAs.	CO3 L1
d) Denote the characteristic table of JK flipflop.	CO4 L1
e) Specify the conditional output box.	CO5 L2
$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60)) Marks)
	Marks CO BL
UNIT-I	
a) Convert the following binary number to decimal, octal and	
hexadecimal number system. (1101.11) ₂	6M CO1 L3
b) Test the following Hamming code for a 4-bit message and	
correct it if necessary 1110 and 1011.	6M CO1 L3
OR	
a) Convert the following into decimal :	
(i) (110011101) ₂ (ii) (246) ₈ (iii) (EEE) ₁₆	6M CO1 L3
b) Subtract the decimal number (7510-2710) using 2's	
complement arithmetic.	6M CO1 L3
UNIT-II	
 a) Simplify the following Boolean functions using k maps 	
F (w,x, y,z) = m (3, 7, 11, 13, 14, 15)	6M CO2 L3
b) Implement the function $F = B' D + A C$ using only NAND gates.	6M CO2 L4
OR	
a) Simplify the following Boolean function F, together with the	
don't-care conditions d, and then express the simplified	
function in sum-of-minterms form:	
F(a,b,c,d)= m(5, 6, 7, 12, 14, 15)+d(m (3,9,11))	8M CO2 L3

		Code: 20A234T				
k	b)	Implement the NOT gate using NAND gate.	4M	CO2	L4	
6. a	a)	Implement full adder circuit using 3X8 Decoder.	6M	CO3	L5	
k	b)	Elucidate 4 bit parallel adder with an example	6M	CO3	L3	
		OR				
7.		Consider the following boolean functions and implement the circuit using PAL. $W = (2,12,13)$ X= (7,8,9,10,11,12,13,14,15)				
		Y= (0,2,3,4,5,6,7,8,10,11,15)	12M	CO3	L3	
-		UNIT-IV				
8. a	a)	Draw the logic symbols and truth tables of JK and T flip flop	6M	CO4	L3	
k	b)	Explain the operation of twisted ring counter with the help of logic diagram and its timing diagrams.	6M	CO4	L3	
		OR				
9. a	a)	Design and explain the working of a Johnson counter with example.	8M	CO4	L3	
k	b)	Analyze the characteristic table and excitation table of D flipflop.	4M	CO4	14	
		UNIT-V				
10.		Draw the state diagram, state table, and ASM chart for a 2-bit binany counter having one enable line E such that				
		E = 1 counting enabled, and $E = 0$ counting disabled.	12M	CO5	L5	
		OR				
11. a	a)	Compare between Moore and Mealy machine.	6M	CO5	L5	
k	b)	Discuss the various blocks of ASM chart. *** End ***	6M	CO5	L4	

Hall Ticket Number :	R-20		
Code: 20AC32T II B.Tech. I Semester Regular & Supplementary Examinations D		123	
Transform Techniques & Complex Variables		520	
(Common to EEE &ECE) Max. Marks: 70	Time: 3 Ho	SILIC	
*****		5015	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks.			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
Answer all the following short answer questions $(5 \times 2 = 10 \times 10^{10} \times $	1)	со	BL
a) Find the Laplace transform of sin 2	,	01	L۷
b) Find the inverse Laplace transforms of $\frac{st^{-3}}{(\frac{s^2}{(s-2)^3})^{-3}}$			
$\left(\frac{3}{(s-2)^3}\right)$	C	02	L4
c) Write the Dirichlet's conditions.	C	03	Ľ
d) If w=log z, find $\frac{dw}{dz}$	C	04	12
a) Find the nature and location of singularities of the function		70 4	L -
e) Find the nature and location of singularities of the function	<u>z – z 2</u> 105 (05	L3
<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12	= 60 Marks)		
		~~~	
UNIT–I	Marks	СО	
2. a) Find the Laplace transform of F(t) = $\begin{cases} -1 & 0 < t \le 1 \\ t, 0 & 0 < t \le 1 \\ t, 1 & t > 2 \end{cases}$	6M	CO1	
b) Find the Laplace transform of the function	OW	001	
f(t) = sin t, 0 < t < /			
0 , / <t<2 <="" td=""><td>6M</td><td>CO1</td><td></td></t<2>	6M	CO1	
OR <r<></r<>			
3. a) Find the Laplace transform of $\frac{2}{\cos at} - \cos bt}{t}$	6M	CO1	
b) Find the Laplace transforms of tsinat	6M		
UNIT–II			
4. Find the inverse transforms of $\frac{ \mathbf{T} - \mathbf{II} _{-1}}{\frac{5s+3}{(s-1)(s^2+2s+5)}}$	12M	C02	)
OR		002	

Page **1** of **2** 

5.	Solve $(D^3-3D^2+3D-1)y = t^2e^t$	1014		
	given that y(0)=1, y'(0)=0, y''(0)=-2.	I ZIVI	CO2	L3
6.	<b>UNIT–III</b> If $f(x) =  cosx $ , expand expand $f(x)$ as a fourier series in			
	the interval (- , ).	12M	CO3	L4
	OR			
	-1			
7.	Find the Fourier transform of $f(x) = \begin{cases} 1 & 1 \\ x & x \\ 0, y \\ x \\$	12M	CO3	L1
	UNIT-IV			
8.	Evaluate, using Cauchy's integral formula: $\int_{c} \frac{z^{2} \leq \pi z}{z^{2} - 1} dz$ around a rectangle with vertices $2 \pm i, -2 \pm i$ .			
0.	Evaluate, using Cauchy's integral formula. J. $\frac{c^2 - 2\pi z}{z^2 - 1} dz$			
	around a rectangle with vertices $2\pm i$ , $-2\pm i$ .	12M	CO4	L2
	OR			
9.	Find the orthogonal trajectories of the family of curves			
	$x^4+y^4-6x^2y^2 = constant.$	12M	CO4	L3
	UNIT–V			
10.	Find the Taylor's expansion of $f(z) = \frac{-1}{2z^3+1}$ about z=i.	12M	CO5	L3
	OR			
11.	Find the residue of $f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)} a^{t}$ its poles and			
	hence evaluate $\oint c \frac{f(z)dz}{*** \text{ End }***}$ is the circle $ z =2.5$	12M	CO5	L2

Hall Ticket Number :		
Code: 20A233T	R-20	
II B.Tech. I Semester Regular & Supplementary Examinations Dece	mber 202	23
Analog Electronics		
(Electrical and Electronics Engineering) Max. Marks: 70	me: 3 Hou	irs
********* Note: 1. Question Paper consists of two parts ( <b>Part-A</b> and <b>Part-B</b> )		
2. In Part-A, each question carries <b>Two marks.</b>		
3. Answer ALL the questions in Part-A and Part-B		
<u>PART-A</u> (Compulsory question)		
1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M	) CO	BL
a) What are the components of feedback amplifier?	1	
b) Define CMRR of an op-amp.	2	
c) Draw the circuit of peak value Detector using op-amp	3	
d) What are the basic building blocks of PLL?	4	
e) Which is the fastest ADC and why?	5	L2
PART-B		
Answer <i>five</i> questions by choosing one question from each unit ( 5 x 12 =	•	
	Marks C	Ю В
. Draw the circuit diagram of voltage series feedback amplifier		
and derive expressions for input and output resistances.	12M	1 L
OR		
. a) Show that the bandwidth increases in negative feedback		
amplifiers.	6M	1 L
b) Draw the circuit diagram of RC-phase shift oscillator using		
BJT and derive the expression for frequency of oscillations.	6M	1 L
UNIT–II		
. a) Explain how an op-amp can be used as integrator? Also		
derive expression for the output.	6M	2 L
b) Design inverting amplifier with $R_1=5K$ , $R_F=20K$ , $V_i=1V$ . A load of 5K is connected to the output terminal. Calculate		
(i) $A_{CL}$ (ii) $V_0$ (iii) $I_1$ and total current $I_0$ into the output pin.	6M	2 L
OR		
. a) Explain the operation of I-V converter.	6M	2 L
b) Explain non inverting op-amp with neat circuit diagram and		
derive the expression for output voltage	6M	2 L

		UNIT–III			
6.	a)				
		following components. R1=35k , R2=30k , R=50k and		_	
		$C = 0.01 \mu F$ . Calculate the circuits frequency of oscillation.	6M	3	L3
	b)	Design a first order high pass filter for a high cut-off frequency of 2 kHz and Pass band gain of 2.	6M	3	L3
		OR			
7.		Explain the working principle and operation of Astable Multi-			
		vibrator using Op-Amp with relevant sketch.	12M	3	L3
		UNIT–IV			
8.		Derive the Expression for time period of Monostable MV			
		using 555 Timer with relevant waveforms.	12M	4	L3
		OR			
9.	a)	Draw the block diagram of 555 timer and explain function of			
		each pin of 555 timer	6M	4	L2
	b)	Derive an expression for Capture Range of PLL.	6M	4	L3
		UNIT–V			
10.		Explain the working principle of Successive approximation			
		ADC with a neat diagram.	12M	5	L2
		OR			
11.	a)	Find the output voltage of a 4-bit binary weighted resistor DAC with following inputs, $R = R_f = 1K$ and $V_R = +8V$ .			
		(i) 1001 (ii) 1100	6M	5	L3
	b)	Obtain an expression for the output voltage of R-2R DAC.	6M	5	L3

*** End ***