Code: 20A333T
\square
|| B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Basic Thermodynamics
 (Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) List the limitations of First Law of Thermodynamics. $1 \quad$ L1
b) Compare refrigerator and heat pump. 2 L2
c) Define triple point and critical point for pure substance. $3 \quad$ L1
d) How does the Vander Waals equation differ from the ideal gas equation of
state?
e) State the assumptions in Air standard cycle.

5 L1
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. A three process cycle operating with nitrogen as working substances has a constant temperature compression at 340 C with initial pressure 100 kPa . Then the gas undergoes a constant volume heating and then polytropic expansion with 1.35 as index of compression. The isothermal compression requires $-67 \mathrm{~kJ} / \mathrm{kg}$ of the work. Determine (i) P, v and T around the cycle (ii) Heat in and out (iii) Network done. For nitrogen gas, $c_{v}=0.7431 \mathrm{~kJ} / \mathrm{kg}$. Molecular weight $=28.02 \mathrm{~kg} / \mathrm{kg}-\mathrm{mol}$.

OR

3. In a gas turbine unit, the gases flow through the turbine is 15 kg / s and the power developed by the turbine is 12 MW . The enthalpies of gases at the inlet and outlet are $1260 \mathrm{~kJ} / \mathrm{kg}$ and $400 \mathrm{~kJ} / \mathrm{kg}$ respectively, and the velocity of gases at the inlet and outlet are $50 \mathrm{~m} / \mathrm{s}$ and $110 \mathrm{~m} / \mathrm{s}$ respectively. Calculate: i) The rate at which heat is rejected to the turbine, and ii) The area of the inlet pipe given that the specific volume of the gases at the inlet is $0.45 \mathrm{~m}^{3} / \mathrm{kg}$.

UNIT-II

4. An irreversible heat engine with 66% efficiency of the maximum possible is operating between 1000 K and 300 K . If it delivers 3 kW of work, determine the heat extracted from the high temperature reservoir and heat rejected to low temperature reservoir.

OR

5. Derive Maxwell relations.

UNIT-III

6. Steam at 120 bar has a specific volume of $0.01721 \mathrm{~m}^{3} / \mathrm{kg}$, find the temperature, enthalpy and the internal energy.

OR
7. Find the specific volume, enthalpy and internal energy of wet steam at 18 bar with dryness fraction (x) $=0.85$, by using Steam Tables and Mollier chart.

12M 3 L3

UNIT-IV

8. A container of $3 \mathrm{~m}^{3}$ capacity contains 10 kg of CO_{2} at $27^{\circ} \mathrm{C}$.

Estimate the pressure exerted by CO_{2} by using
(i) Perfect gas equation
(ii) Vanderwaals equation
$\mathrm{a}=362850 \mathrm{Nm} 4 /(\mathrm{kg}-\mathrm{mol}) 2$ and $\mathrm{b}=0.0423 \mathrm{m3} /(\mathrm{kg}-\mathrm{mol})$.
12M
4 L3
OR
9. A vessel contains at 1 bar and $20^{\circ} \mathrm{C}$ a mixture of 1 mole of CO_{2} and 4 moles of air. Calculate for the mixture :
(i) The masses of $\mathrm{CO}_{2}, \mathrm{O}_{2}$ and N_{2}, and the total mass
(ii) The percentage carbon content by mass
(iii) The apparent molecular weight and the gas constant for the mixture
(iv) The specific volume of the mixture.

The volumetric analysis of air can be taken as 21% oxygen and 79% nitrogen.

12M 4 L3

UNIT-V

10. An engine works on Otto cycle. The initial pressure and temperature of the air is 1 bar and $40^{\circ} \mathrm{C} .825 \mathrm{~kJ}$ of heat is supplied per kg of air at the end of compression. Find the temperature and pressure at all salient points if the compression ratio is 6 . Also find the efficiency and mean effective pressure for the cycle. Assume air is used as the working fluid and take all ideal conditions.

12M

OR

11. Two engines are to operate on Otto and Diesel cycles with the following data:
Maximum temperature $=1400 \mathrm{~K}$
Exhaust temperature $=700 \mathrm{~K}$
State of air at the beginning of compression $=0.1 \mathrm{MPa}, 300 \mathrm{~K}$.
Estimate
i. The compression ratios
ii. The maximum pressures
iii. Rate of work outputs (for $1 \mathrm{~kg} / \mathrm{min}$ of air) of the respective cycles
\square
Code: 20A332T
|| B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Manufacturing processes

(Mechanical Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 M) \quad C O \quad B L$
a) Write any four pattern allowances. CO1 L1
b) Differentiate soldering and Brazing processes. CO2 L2
c) Define Hot working and cold working. CO3 L1
d) Identify any four defects in forging. CO4 L1
e) How do you classify plastics? CO5 L2
PART-BAnswer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
UNIT-I2. a) Describe investment casting process.6M CO1 L2b) Explain Types of Risers and their function.
6M CO1 L3
OR
2. a) Discuss various defects in the casting process.b) Illustrate Concept of Solidification for pure metal andalloys.6M CO1 L3
UNIT-II4. a) Explain different weld defects?
$6 \mathrm{M} \mathrm{CO2}$ L2b) Compare Soldering, Brazing, and Welding and mentiontheir applications.
$6 \mathrm{M} \mathrm{CO2}$ L3
OR
3. a) Differentiate TIG and MIG welding. $6 \mathrm{M} \mathrm{CO2}$ L2
b) Explain destructive and nondestructive testing of welds. $6 \mathrm{M} \mathrm{CO2}$ L3
UNIT-III
4. a) Analyze re-crystallization and grain growth of metals during hot working process.

[^0]b) Argue different defects in rolled products.

6M CO3 L5

OR

7. a) Classify Rolling mills and explain any one Rolling mill operation.

6M CO3 L4

b) Analyze stamping and forming cold working processes.

6 M CO3 L5

UNIT-IV

8. a) Explain Forward and backward extrusion process.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
b) Discuss Roll forging process and mention where it is used? OR
9. a) Describe Hydrostatic extrusion processes.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
b) Discuss different forging defects.

6 M CO L3

UNIT-V

10. a) Summarize the various differences between
thermoplastics and thermosetting plastics? $6 \mathrm{M} \cos \mathrm{L} 1$
b) Elaborate steel making using crucible process? 6M cos L2

OR

11. a) How do you classify plastics and mention properties of any
two widely used plastics.
b) Explain the steps involved in powder metallurgy?
$6 \mathrm{M} \mathrm{CO5}$ L2

II B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Partial Differential Equations and Numerical Methods

(Common to CE and ME)
Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Write the Newton-Raphson formula to the approximate root of the equation $\mathrm{f}(\mathrm{x})=0 . \quad \mathrm{CO} 1 \mathrm{~L} 2$
Also explain when Newton-Raphson method fails?
b) Find the interpolating polynomial for the data $(1,2)$ and $(2,4)$.

CO2 L2
c) State the Simpson's $1 / 3^{\text {rd }} \& 3 / 8^{\text {th }}$ rule for evaluating $\int_{x_{0}}^{x_{n}} f(x) d x$

CO3
d) Briefly explain the Runge-Kutta method of fourth order.

CO4
e) Write the all possible solutions of 2D-Laplace equation.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)
Marks CO

UNIT-I

2. a) Find the root of equation $x^{3}-2 x-5=0$ using the bisection method correct to three decimal places
b) Find the fourth root of 32 correct to four decimal places by choosing regulafalsi method.

6M CO1 L4

OR

3. a) Using Newton Raphson method, find a real root of the equation $x \sin x+\cos x=0$.

6M CO1
b) Find a root of $x^{3}-x-1=0$ by choosing Iteration method.

6M CO1

UNIT-II

4. a) Estimate the value of $f(22)$ from the following data.

X	20	25	30	35	40	45
$f(x)$	354	332	291	260	231	204

b) The population of a town in decimal census was as given below. Estimate the population for the year 1955.

Year x	1921	1931	1941	1951	1961
Population y	46	66	81	93	101

5. a) From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks:	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students:	31	42	51	35	31

b) Using Lagrange's interpolation formula, calculate $y(2)$ from the table

x	0	1	3	4
y	-12	0	12	24

6. Given that

$\mathrm{x}:$	1.0	1.1	1.2	1.3	1.4	1.5	1.6
$\mathrm{f}(\mathrm{x}): 7.989$	8.403	8.781	9.129	9.451	9.750	10.031	

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.0$
7. a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} d \theta$ by dividing the integral into 6 parts using trapezoidal rule and Simpson's $1 / 3^{\text {rd }}$ rule.
b) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ Using Simpson's $3 / 8^{\text {th }}$ rule.

6 M CO3 L3

UNIT-IV

8. a) Apply Euler's method to find y for $x=0.1$
for $\frac{d y}{d x}=x+y+x y, \quad y(0)=1$, taking step size 0.025 .
6M CO4 L3
b) Given $\frac{d y}{d x}=x+y^{2}, y(0)=1, \quad h=0.2$, Calculate $y(0.2)$ using Runge Kutta method.

6M CO4 L4

OR

9. a) Find the value of y for $x=0.1$, by Picard's method, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.

6M CO4 L4
b) Solve by Taylor's series method the equation $\frac{d y}{d x}=\log (x y)$ for $y(1.1)$, given $y(1)=2$.

6M CO4 L3

UNIT-V

10. A string is stretched and fastened at two point / apart. Motion is started by displacing the string in the form $y=a \sin \left(\frac{\pi x}{l}\right)$ from which it is released at time $t=0$. Show that the displacement of the string $y(x, t)=a \sin \left(\frac{\pi x}{l}\right) \cos \left(\frac{\pi c t}{l}\right)$.

OR

11. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π; this end is maintained at a temperature u_{0} at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.

12M CO5
L4

Code: 20A331T
|| B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Mechanics of Solids

(Mechanical Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Define strength and give one example
b) Enumerate the relationship between load, shear force and bending moment
c) If there are two beams with cross sectional dimensions $100 * 50$, and $50 * 100$. Which one is stronger in bending?
d) What are the different methods used to find out the slope and deflection at a section in a loaded Beam?
e) Define longitudinal Stress and circumferential Stress. 5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. A specimen of steel 25 mm diameter with a gauge length of 200 mm is tested to destruction. It has an extension of 0.16 mm under a load of 80 kN and the load at elastic limit is 160 kN . The maximum load is 180 kN . The total extension at fracture is 56 mm and the diameter at the neck is 18 mm . Find (i) the stresses at elastic limit, (ii) Young's Modulus, (iii) Percentage elongation, (iv)Percentage reduction in area and, (v)Ultimate tensile stress.

OR

3. A bar of 25 mm diameter is tested in tension. It is observed that when a load of 60 kN is applied, the extension measured over a gauge length of 200 mm is 0.12 mm and contraction in diameter is 0.0045 mm . Find the Poisson's ratio and elastic constants E , G, K.

UNIT-II

4. A simply supported beam of span 10 m carries point loads 6 kN each at distance of 3 m and 5 m from left support. Draw the S.F and B.M diagrams for the beam.
5. An overhanging beam is shown in figure. Draw the S.F and B.M diagrams

Figure
12M 2
3
6. A beam is simply supported and carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ for the whole span. The section of the beam is rectangular having depth as 500 mm . If the maximum stress in the material of the beam is $120 \mathrm{~N} / \mathrm{mm}^{2}$ and moment of inertia of the section is $7 \times 10^{8} \mathrm{~mm}^{4}$, find the span of the beam.

OR

7. A T - section beam with $100 \mathrm{~mm} \times 15 \mathrm{~mm}$ flange and $150 \mathrm{~mm} \times$ 15 mm web is subjected to a shear force of 10 kN at a section. Draw the variation of shear stress across the depth of the beam and obtain the value of maximum shear stress of the section.

12M

UNIT-IV

8. A 300 mm long cantilever of rectangular section 48 mm wide and 36 mm deep carries a uniformly distributed load. Calculate the value of load w if the maximum deflection in the cantilever is not to exceed 1.5 mm . Take $\mathrm{E}=120 \mathrm{GPa}$.

OR

9. Find the deflection of a rectangular beam as shown below of cross section $10 \mathrm{~cm} \times 6 \mathrm{~cm}$ at the midpoint of the length. Take $\mathrm{E}=10^{4} \mathrm{KN} / \mathrm{cm}^{2}$.

12M 43
UNIT-V
10. A cylindrical vessel is 1.6 m diameter and 5 m long is closed at ends by rivets. It is subjected to an internal pressure of 4 $\mathrm{N} / \mathrm{mm}^{2}$. If the maximum principal stress is not to exceed 120 $\mathrm{N} / \mathrm{mm}^{2}$, find the thickness of the shell. Also find change in diameter, length and volume of the vessel by assuming $E=2 x$ $10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$.

OR

11. A cylindrical shell 1 m long, 180 mm internal diameter, thickness of metal 8 mm is filled with a fluid at atmospheric pressure. If an additional $20,000 \mathrm{~mm}^{3}$ of the fluid is pumped in to the cylinder. Find the pressure exerted by the fluid on the wall of the cylinder and also find the hoop stress is induced take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.3$

Hall Ticket Number :

Code: 20A235T

II B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Basic Electrical and Electronics Engineering

(Mechanical Engineering)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) Define voltage
b) Explain the use of commutator

11
c) Write the formula for calculating the efficiency of transformer?

22
d) Sketch the V-I Characteristic of PN Junction diode
e) Enumerate the applications of CRO 52

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Differentiate between static and dynamic emf with examples
b) Outline in brief about Right hand thumb rule and Right hand palm rule
3. a) Describe Faraday's laws of electromagnetic induction
b) Explain in detail about Kirchoff's laws 6M 13

UNIT-II

4. Illustrate with neat diagram the constructional details of DC Generator and explain its principle of operation.

OR

5. a) Derive an expression for torque of a DC motor
b) Write a brief note on brake test of a DC motor
6. Develop an expression for emf of 1- \varnothing transformer 12M
7. Discuss in detail about Regulation by synchronous impedance method

UNIT-IV

8. a) Explain in detail the working of full wave bridge rectifier
$4 \mathrm{M} \quad 4 \quad 5$
b) How do you operate a PN Junction diode as a switch?
$4 \mathrm{M} \quad 4 \quad 5$

OR

9. With relevant characteristic curves explicate the operation of CE configuration PNP transistor \quad UNIT-V

[^1]
[^0]: $6 \mathrm{M} \mathrm{CO3}$ L4

[^1]: *** End ${ }^{* * *}$

