	Hall Ticket Number :			1
	Code: 20A332T	R-20		
	II B.Tech. I Semester Regular Examinations March 2022 Manufacturing Processes			
	(Mechanical Engineering) Max. Marks: 70	lime: 3 I	Hours	5
r	**************************************			
1	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A 			
	(Compulsory question)			
1.	Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	C)	looms _evel
a) [Define centrifugal die casting		1	1
-	ist destructive and non-destructive testing of welds		2	1
c) l	_ist different types of defects in rolled products.		3	1
d) \	What is difference between Forward and backward extrusion proc	ess	4	1
e) E	Explain principle of blow molding		5	1
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	= 60 Mar	ks)	DI
		Marks	СО	Blooms Level
	UNIT–I			
2.	Describe different types pattern allowances. Explain the importance of gating and riser system in casting process.	12M	2	1
	OR			
3.	What are the common casting defects? State their causes and remedies.	12M	2	2
	UNIT–II			
4.	Explain TIG welding process with neat diagram. List out advantages and applications of this process.	12M	2	2
	OR		Ζ	Z
5.	Classify welding process. Explain different types of welded			
5.	joints.	12M	2	2
	UNIT–III			
6.	Explain the classification of metal working processes on the			
	basis of forces applied. Describe types of rolling mills with neat	4014		
	block diagram	12M	3	2
	OR			

7.	Compare hot and cold working processes. Explain Blanking, piercing, Bending and drawing processes.	12M	3	2
8.	Define Extrusion? What are types of Extrusion processes? Explain each one with neat sketches? OR	12M	4	2
0	-			
9.	Explain principles of forging operations. Describe types of forging and their construction	12M	4	2
	UNIT–V			
10.	What is plastic injection molding? Explain different types of injection molding techniques?	12M	5	2
11	-			
11.	Explain the steps in manufacturing of powder metallurgy parts. What is role of 3D printers in present scenario? *** End ***	12M	5	2

	Ha	all Ticket Number :												
	Coc	le: 20A331T		<u> </u>	, <u>, , , , , , , , , , , , , , , , , , </u>					R	-20			
		II B.Tech. I S		-			ions	Mai	rch 2	022				
					cs of So		. \							
	Mo	ax. Marks: 70	(Me	chanica	l Engine	enng)			Time	e:3+	lour	S	
					****	1 0								
	Note	e: 1. Question Paper con 2. In Part-A, each que		· ·		nd Pa	art-B	5)						
		3. Answer ALL the qu				-B								
			(<u>RT-A</u>	· · ·)								
		1 Annuar all the fe		-	ory questio	-	200	(5	V O	1014		`	Blooms	6
	2)	1. Answer all the fo	•		•			(5)	∧				Level	
		Define the terms s		•••				m f		aimalı	, 1 ,		1	
	b)	Draw Shear force supported beam		•			•					,	1	
		distributed load.		igui		oui		9 4		lienny			•	
	c)	What do you mear	n by Pui	e bendi	ing?						3		1	
	d)	What is the relation	on betw	veen Sl	ope, de	flec	tion	and	d rad	dius of	f 4		1	
		curvature of a bea	m?								7		I	
	e)	Differentiate betwee thin cylindrical she		p stres	s and l	ongi	tudi	nal	stres	ss in a	a 5		1	
	_				RT-B		_	_						
	Α	Answer <i>five</i> questions b	y choosi	ng one q	uestion f	rom	each	unit	:(5 x			-	Blo	oms
										IV	larks	CO	Le	vel
0	-)		I	UNIT-I							48.4			0
Ζ.	a)	Write a note on Mo				! !			-		4M			3
	b)	Three bars made o length and have cro												
		respectively. They			•			•						
		compound membe	•	•										
		250kN, determine	• •											
		rod and the induction Copper=1.3X10 ⁵												
		Aluminium = $0.8 X^{2}$				5 1	N/1111		and		8M		I	3
				OR										
3.		A bar of 20 mm dia	ameter	is teste	d in ten	sion	. It i	is ol	oser\	/ed				
		that when a load												
		measured over a contraction in dian		•										
		and elastic constar				inu		5301	1010		2M			3
			. ,											

			ode: 20A	3311	
4.	a)	A cantilever 1.5 m long is loaded with a uniformly distributed load of 2 KN/m run over a length of 1.25 m from the free end. It also carries a point load of 3 KN at a distance of 0.25 m from the free end. Draw S.F and B.M. Diagrams of the			
		cantilever beam.	6M	2	6
	b)	A beam 10 m long has supports at its ends A and B. It carries a point load of 2.5 KN at 7 m from A and a uniformly distributed load of 0.5 KN/m between the point load and right end. Draw the SF and BM diagrams.	6M	2	6
		OR			
5.	a)	Draw the SFD and BMD for a simply supported beam of length 9 m and carrying a uniformly distributed load of 10KN/m for a distance of 6 m from the left end. Also calculate	71.4	0	0
	۲	the maximum bending moment on the section.	7M	2	6
	D)	Derive the relation between shear force, bending moment and rate of loading.	5M	2	6
		UNIT-III			
6.	a)	A square beam 20mm X20mm in section and 2 m long is supported at the ends. The beam fails when a point load of 400 N is applied at the centre of the beam. What uniformly distributed load per meter length will break a cantilever of the	014	2	2
	۲	same material 40 mm wide,60 mm deep and 3 m long?	8M	3	3
	D)	What are the assumptions made in theory of simple bending? OR	4M	3	2
7.		An I section beam 350 mm X150 mm has a web thickness of 10 mm and a flange thickness of 20 mm. If the shear force acting on the section is 40 kN, find (i) the maximum shear stress developed in the I-section (ii) sketch the shear stress distribution across the section and (iii) Calculate the total shear force carried by the web.	12M	3	3
8.		UNIT-IV A beam of length 20 m is simply supported at its ends and carries two point loads of 4 KN and 10 KN at a distance of 8m and 12 m from left end respectively. Calculate (i) deflection under each load (ii) maximum deflection.			

Take $E = 2X10^6 \text{ N/mm}^2$ and $I = 1X10^9 \text{ mm}^4$. 12M 4

3

9.	a)	Derive the equations for the slope and deflection of a simply supported beam of length L and carrying a uniformly distributed load of w per unit length over the entire length.	6M	4	6
	b)	A cantilever of length 2 m carries a uniformly distributed load of 2 KN/m over a length of 1 m from the free end, and a point load of 1KN at the free end, Find the slope and deflection			
		at the free end If E = $2.1 \times 10^5 \text{ N/mm}^2$ and I = $6.667 \times 10^7 \text{ mm}^4$. UNIT-V	6M	4	2
10.	a)	A cylindrical shell is subjected to internal fluid pressure, derive an expression for change in diameter.			
			5M	5	6
	b)	A cylindrical vessel is 1.5 m diameter and 4 m long is closed at ends by rigid plates. It is subjected to an internal pressure of 3 N/mm ² . If the maximum principal stress is not to exceed 150 N/mm ² , find the thickness of the shell. Assume $E=2X10^5N/mm^2$ and Poisson's ratio is 0.25. Find the changes			
		in diameter, length and volume of the shell.	7M	5	2
		OR			
11.	a)	Derive the expressions for change in volume of a thin cylindrical shell subjected to an internal pressure 'P'.	5M	5	6
	b)	A cylindrical thin drum 80 cm in diameter and 3 m long has a shell thickness of 1 cm. If the drum is subjected to an internal pressure of 2.5 N/mm ² , determine (i) change in diameter			
		(ii) change in length and (iii) change in volume. *** End ***	7M	5	3

Hall Ticket Number :			7
Code: 20AC31T	R	20	
II B.Tech. I Semester Regular Examinations March			
Partial Differential Equations and Numerical Me (Common to CE and ME)	emoas		
Max. Marks: 70	Time:	3 Hour	S
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 			
1. Answer all the following short answer questions $(5 \times 2 = 1)$	10M) Co		oms vel
a) Write merits and demerits of Bisection method.	CC		.1
b) Define backward differences.	CC)2 L	.2
c) Write formulas for first and second derivatives using New forward interpolation formula.	ton's co)3 L	.3
 d) Explain Taylor's series method for solving IVP 			
$\frac{dy}{dx} = f(x, y) with y(x_0) = y_0.$	CC	04 L	.2
e) Write One dimensional wave equation with boundary and conditions.	initial co)5 L	.1
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5	• X 12 = 60 IV Marks	iarкs) со	Blooms
UNIT–I	Marks	00	Level
2. a) Using bisection method, compute the real root of	the		
equation $x^3 - 2x - 5 = 0$.	7M	CO1	L4
 b) Develop an Iterative formula to find the square root of positive number N. Using Newton-Raphson method. (OR) 	ofa 5M	CO1	L3
3. a) Find a real root of the equation $xe^x - 3 = 0$, Using Fa position method.	alse 6M	CO1	L3
b) Find a real root of the equation $\log_{10x} = 3$ using iterat method.	tion 6M	CO1	L4
4. a) Evaluate $\Delta^2 (\tan^{-1} x)$.	4M	CO2	L3

Code: 20AC31T

b) Using Newton's forward formula, find the value of :) if f(1.2 1.8 2.2 8M 1 1.4 CO₂ L4 3.49 4.82 5.96 6.5 f(x)(OR) 5. a) Compute f(27) Using Lagrange's formula from the following table: 5M CO2 L3 17 14 31 35 x 68.7 64.0 44.0 39.1 f(x)b) Construct Newton's backward interpolation formula for the following data and hence find the value of y for $x = \frac{1}{2}$. 5M CO2 L4 8 10 4 6 Х 3 8 1 16 UNIT-III 6. a) Determine $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ at x = 0 from the following data 6M CO3 L4 x012345y4815762 b) Compute the value of $\int_{0}^{1} \frac{dx}{1+x^2}$ using trapezoidal rule. 6M CO3 L3 (**O**R) 7. a) Evaluate $\int_{2}^{0.6} e^{-x^2} dx$ by using Simpson's $\frac{1}{3}$ rd rule taking 6M CO3 L3 seven ordinates. b) Compute the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ using 6M CO3 L3 Simpson's $\frac{3}{8}$ th rule. UNIT-IV 8. a) Using Taylor's method find y(0.2) from 6M CO₄ L2 $\frac{dy}{dx} = 2y + 3e^x, y(0) = 0.$

b) Using the fourth order Runge – Kutta formula, find

$$y(0.2) and y(0.4)$$
 given that
 $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, y(0) = 1.$
(OR)
9. a) Apply Euler's method to solve $\frac{dy}{dx} = x + y$ with
 $y(0) = 0$, Choosing the step length $h = 0.2$ to
estimate y at $x = 0.2, 0.4, 0.6.$
b) Find the value of y at $x = 0.1$ by Picard's method, given
that $\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1.$
(UNIT-V)
10. A tightly stretched string with fixed end points $x = 0$ and
 $x = L$ is initially in a position given by $y = y_0 \sin^3\left(\frac{f x}{L}\right)$
if it is released from rest from this position, find
the displacement $y(x,t)$.
OR
11. Solve the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the
conditions 12M COS L3

u(0,t) = 0, u(L,t) = 0 for all t; u(x,0) = f(x), 0 < x < L.

|--|

Code: 20A235T

R-20

II B.Tech. I Semester Regular Examinations March 2022

Basic Electrical and Electronics Engineering

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. In Part-A, each question carries Two mark.

3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	СО	Blooms Level
a) Define current and voltage?	1	L1
b) Give different methods of speed control of DC motors?	2	L2
c) Define and write the expression for synchronous speed?	3	L1
d) What are the applications of P-N junction diode?	4	L2
e) Write classification of measuring instruments?	5	L2

PART-B

Answer *five* questions by choosing one question from each unit ($5 \ge 12 = 60$ Marks)

			Marks	со	Blooms Level
		UNIT–I			
2.	a)	Explain the classification of circuit elements?	6M	1	L2
	b)	State and explain Flemings Right hand rule.	6M	1	L3
		OR			

- 3. a) State and explain Faraday's law of electromagnetic induction? 6M 1 L2
 - b) Find the values of current i and voltage drops v1 and v2 in the circuit which contains a current dependent voltage source. What is the voltage of dependent source? All resistance values are in ohms.

6M 1 L3

2

2

6M

6M

L2

L3

UNIT-II

- 4. a) With the help of neat sketches explain the working principle and constructional details of DC machine
 - b) Calculate the flux in a 4-pole DC generator with 722 armature conductors generating 500V when running at 1000 rpm when the armature is (i) Lap connected (ii) wave connected

Code: 20A235T

5.	a)	Explain different methods of speed control of DC series motors?	6M	2	L2
	b)	A series generator delivers a current of 100 A at 250V. its armature and series field resistance are 0.1 and 0.055, respectively. Find (i) Armature Current (ii) Generated EMF	6M	2	L3
6.	a)	Explain the operation of single phase induction motor with its constructional features?	6M	3	L2
	b)	Draw the circuit diagram and explain about break test on 3-phase induction motor.	6M	3	L3
		OR			
7.	a)	Explain the operation of single phase transformer with its constructional features?	6M	3	L2
	b)	A 3300/250 V, 50 Hz single phase transformer is built on a core having an effective cross sectional area of 125cm ² and 70 turns			
		on LV winding. Calculate (i) B _{max} (ii) No of turns on HV winding. UNIT-IV	6M	3	L3
8.	a)	Explain in detail the working of PN junction diode and draw VI			
		characteristics.	6M	4	L2
	b)	What is the relation between I_B , I_C and I_E in CB configuration?	6M	4	L4
	,	OR			
9.	a)	Draw the circuit diagram of an half wave rectifier and explain its			
	,	operation. Also derive expressions for rectification efficiency and			
		ripple factor.	6M	4	L4
	b)	Explain the operation of transistor as an amplifier.	6M	4	L2
	,				
10.	a)	What is the principle of CRO? What is the function of time base			
	,	generator in CRO?	6M	5	L2
	b)	Differentiate Earth wire and Neutral wire. Why is ground wire			
	,	used in equipment ground?	6M	5	L3
		OR			
11.	a)	Explain the construction and operation of a miniature circuit			
		breaker (MCB)	6M	5	L2
	b)	State the basic requirements of any measuring instrument. How			
		are the various measuring instruments classified?	6M	5	L1
		*** End ***			

	Ha	all Ticket Number :															l
	Coc	de: 20A333T		<u></u>									_1		R-20		
	II B.Tech. I Semester Regular Examinations March 2022																
Basic Thermodynamics																	
	(Mechanical Engineering) Max. Marks: 70 Time: 3 Hours																

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark.																	
		3. Answer ALL th	-			n Pa i	rt-A	and		-B							
					(Co	-	<u>PAR'</u> ilsor		estior	1)							
1.	Ans	swer all the following	na s	hort		-		-			X 2	2 = 1	0M)	C	0	Blooms Level
a)		ine reversible and	-				-			ι -			_			1	Lever L1
b)		erentiate betweer				•										2	L2
c)		at is a pure substa		-				•	-		es.					3	L2
d)	Defi	ine enthalpy. Is it a	prop	perty	? If i	t is a	a pro	pert	y, wł	nat k	ind	of pr	opeı	ty it is?	?	4	L2
e)	Sta	te two assumptior	ns of	f air	star	ndar	d cy	cles	•							5	L2
			_				PAR'				_				、		
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO Blooms																	
						UNI	T–I								Marito	00	Level
2.	a)	Explain the three	e t	ypes	s of	the	ermo	dyn	amio	c sy	stei	ms	with	neat			
		figures. Give exa	-												6M	1	L2
	b)	A vessel of 0.2 n kg of nitrogen					•										
		pressure when t	-	-													
		nitrogen gas con													6M	1	L3
-						-)R			_	_	_	_				
3.		State the assum	-						-				-		6M	1	L2
	b)	A gas undergoe process is an ex			•												
		pV = Constant	•									•					
		process that ret			<u> </u>									_			
		process. The sta with the expans				•											
		diagram and det								•				a p i	6M	1	L3
			<u>.</u>			UNI										_	
4.	a)	Prove that entrop		-	-	erty	of a	sys	tem.						6M	2	L2
b) Derive Maxwell's relations. 6M									2	L2							
5.	a)	State and prove	the	prin	ciple			ase	e of e	entra	vac				6M	2	L2
0.	⊆, b)			-	-								sult	of the	om	_	
	,	following proces	ses:			-											
		(i) A copper bloc			-		-		nd w	ith c	p =1	50	J / k	g-K at			
		100 ⁰ C is plac (ii) Two such blo							are i	oine	ed tr	naeti	her		6M	2	L3
			5110	~ 1								300			Page 2		-
															0	_	

		Code	: 20A3	33T	
		UNIT–III			
6.	a)	Show the following processes on T-s and h-s diagrams:			
		(i) Constant volume cooling, (ii) Constant pressure heating			
		(iii) Throttling, and (iv) Isentropic expansion.	6M	3	L2
	b)	A vessel of 0.025 m ³ capacity contains steam at 250 ^o C. The			
	,	mass of liquid present is 4 kg. Determine the pressure, the			
		mass, the specific volume and the enthalpy of the steam.	6M	3	L3
		OR			
7.	a)	Derive Clausius – Clapeyron equation.	6M	3	L2
	-	Steam at the critical state is contained in a rigid vessel. Heat is			
	,	transferred from the steam until the pressure falls to 25 bar.			
		Determine the quality of the steam.	6M	3	L3
		UNIT-IV			
8.	a)	What is adiabatic process? Show that for an adiabatic process:			
	,	PV = constant	6M	4	L2
	b)	A mass of gas is compressed in a quasistatic process from 80			
	,	kPa, 0.1 m ³ to 0.4 MPa, 0.03 m ³ . Assuming that the pressure			
		and volume are related by $\mathbf{pv}^n = \mathbf{constant}$, find the work done			
		by the gas system, the heat transferred and the change in			
		internal energy.		4	L3
		OR	6M		
9.	a)	Explain Dalton's law of partial pressures and Avogadro's law of			
		additive volumes.	6M	4	L2
	b)	A mixture of ideal gases consists of 3 kg of nitrogen and 5 kg of			
		carbon dioxide at a pressure of 300 kPa and a temperature of			
		20 [°] C. Find (i) the mole fraction of each constituent, (ii) the			
		equivalent molecular weight of the mixture, (iii) the equivalent			
		gas constant of the mixture, and (iv) the partial pressures and partial volumes.	6M	4	L3
		UNIT-V	OIVI	4	LJ
10.	a)	Differentiate between Otto and Diesel air cycles.	6M	5	L2
10.	b)		OIVI	5	LZ
	D)	35° C. The compression ratio is 8 and heat supplied is 2100			
		kJ/kg. Calculate the maximum pressure and temperature of the			
		cycle, the cycle efficiency, and the mean effective pressure.	6M	5	L3
		OR	••••	-	
11.	a)		6M	5	L2
	b)	In an engine working on dual cycle, the temperature and	OW	Ŭ	
	5)	pressure at the beginning of the cycle are 90° C and 1 bar			
		respectively. The compression ratio is 9. The maximum			
		pressure is limited to 68 bar and total heat supplied per kg of air			
		is 1750 kJ. Compute pressure and temperatures at all salient			
		points and air standard efficiency.	6M	5	L3
		*** End ***			