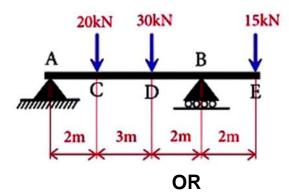

Hal	I Ticket Number :			
Code	N: 204.222T	R-20		
	ech. I Semester Regular & Supplementary Examinations Dece Basic Thermodynamics	mber 2	023	
Max.	(Mechanical Engineering) Marks: 70 Ti	me: 3 H	ours	
	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B PART-A 			
	(Compulsory question) aswer <i>all</i> the following short answer questions $(5 \times 2 = 10M)$	со	BL	
,	/hat is PMM I?	2	L1	
b) N	lention the limitations of first law.	1	L2	
,	efine dryness fraction of steam.	3	L1	
,	/rite the characteristic gas equation.	4	L1	
e) S	how the Otto cycle on P.v. and T.s. diagram.	5	L1	
1	$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60)	Marks)		
		Marks	со	BL
	UNIT-I			
	Explain thermodynamic equilibrium	6M	1	L2
b)	A mass of 1.5 kg of air is compressed in a quasi-static			
	process from 0.1 MPa to 0.7 MPa for which $pv = constant$. The initial density of air is 1.16 kg/m ³ . Find the work done			
	by the piston to compress the air.	6M	1	L3
	OR			
3.	A reciprocating air compressor takes in 2 m ³ /min at 0.11MPa, 20°C which it delivers at 1.5 MPa, 111°C to an aftercooler where the air is cooled at constant pressure to 25°C. The power absorbed by the compressor is 4.15 kW. Determine the heat transfer in (a) the compressor, and (b) the cooler. State your assumptions.	12M	1	L3
4.	Two reversible heat engines A and B are arranged in series, A rejecting heat directly to B. Engine A receives 200 kJ at a temperature of 421°C from a hot source, while engine B is in communication with a cold sink at a temperature of 4.4°C. If the work output of A is twice that of B, find (a) the intermediate temperature between A and B, (b) the efficiency of each engine, and	1014		
	(c) the heat rejected to the cold sink.	12M	2	L3
		_		

5.	OR State and prove Carnot theorem.	12M	2 L2					
	UNIT-III							
6.	Draw the phase equilibrium diagram for a pure substance on T-s plot with relevant constant property lines. OR	12M	3 L3					
7.	Water at 40°C is continuously sprayed into a pipeline carrying 5 tonnes of steam at 5 bar, 300°C per hour. At a section downstream where the pressure is 3 bar, the quality is to be 95%. Find the rate of water spray in kg/h.	12M	3 L3					
	UNIT-IV							
8.	0.5 kg of air, initially at 25°C, is heated reversibly at constant pressure until the volume is doubled, and is then heated reversibly at constant volume until the pressure is doubled. For the total path, find the work transfer, the heat transfer, and the change of entropy	12M	4 L3					
	OR							
9.	0.5 kg of air at 600 kPa receives an addition of heat at constant volume so that its temperature rises from 110°C to 650°C. It then expands in a cylinder polytropically to its original temperature and the index of expansion is 1.32. Finally, it is compressed isothermally to its original volume. Calculate (a) the change of entropy during each of the three stages, (b) the pressures at the end of constant volume heat addition and at the end of expansion. Sketch the processes							
	on the p-v and T-s diagrams.	12M	4 L3					
	UNIT-V							
10.	Derive the thermal efficiency and m.e.p. of Otto cycle. OR	12M	5 L3					
11.	An air standard limited pressure cycle has a compression ratio of 15 and compression begins at 0.1 MPa, 40°C. The maximum pressure is limited to 6 MPa and the heat added is 1.675 MJ/kg. Compute (a) the heat supplied at constant volume per kg of air, (b) the heat supplied at constant pressure per kg of air, (c) the work done per kg of air, (d) the cycle efficiency, (e) the temperature at the end of the constant volume heating process, (f) the cut-off ratio, and (g) the m.e.p. of the cycle. *** End ***	12M	5 L3					

	ode: 20A332T	R-20	
	B.Tech. I Semester Regular & Supplementary Examinations Dec	ember 2	023
	Manufacturing Processes		
	(Mechanical Engineering)	T:	
1710	ax. Marks: 70	Time: 3 H	OUIS
No	te: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks.		
	3. Answer ALL the questions in Part-A and Part-B		
	<u>PART-A</u> (Compulsory question)		
		CO BI	I
	1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	со ы 1 L ²	
	a) Define sprue and raiserb) What is oxidation and describe its impact in welding		
	c) Differentiate hot working and cold working process	2 L ² 3 L2	
	d) Define Dents and cracks in forging process?	3 L	
	e) Define sintering process in powder metallurgy.	4 L 5 L ²	
	PART-B	JL	1
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 :	= 60 Mark	s)
		Marks	-
	UNIT-I		
	Define the pattern? What types of pattern allowances are generally		
	incorporated into a casting pattern? Explain with neat sketches?	12M	1
	OR		
	With neat sketches describe the elements of a gating system	12M	1
	UNIT-II What is the principle involved in Friction stir welding with a block diagram	12M	2
		12101	2
	Describe with neat sketch the Oxy Acetylene gas welding process.	12M	2
		12101	2
;	Describe press working Process with neat sketch?	12M	3
	OR		
	Explain the following metal forming processes		
	a) coining b) Piercing c) Drawing	12M	3
	UNIT-IV		
	List the Extrusion processes? Explain any one with neat sketch?	12M	4
	OR	4014	4
	What are forging defects? Explain rotary forging? UNIT-V	12M	4
	Explain extrusion compression and transfer moulding process with neat sketch	n 12M	5
	OR		-
	Explain steel making using Bessemer converter?	12M	5
	*** End ***		

	Hall Ticket Number :		
	Code: 20A331T		
	II B.Tech. I Semester Regular & Supplementary Examinations December 2023		
	Mechanics of Solids		
	(Mechanical Engineering)		
	Max. Marks: 70 Time: 3 Hours		
	Note: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks.		
	3. Answer ALL the questions in Part-A and Part-B		
	<u>PART-A</u> (Compulsory question)		
Α	Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	ר	
		1	
,	·	I	
'	What are the differential relations between Bending Moment, Shear Force and Rate of Loading?	2	
		3	
	What are the different methods used to find out the slope and deflection at a		
		4	
'	A thin sphere of diameter 1m and thickness of wall 1mm is subjected to	_	
I	•	5	
	<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)		
	Marks CO	В	
	UNIT-I		
2	2. A stepped bar as shown in figure is subjected to different		
	axial forces at different locations. E=200N/mm ² . Determine		
	i) unknown value of axial force P, ii) total axial deformation		
	of the bar		
	800 mm ²		
	400 mm ² 600 mm ²		

3.


A prismatic bar of uniform diameter 100mm is made of mild steel with coefficient of thermal expansion of the bar as 12 x 10^{-6} /°C. The bar is heated to 100 °C from initial temperature of 10 °C. E= 100GPa. Determine thermal stress developed in the bar, when the bar is i) free to expand ii) expansion at the ends is completely prevented iii) when supports at the end yields by 0.5mm. 12N 1

3

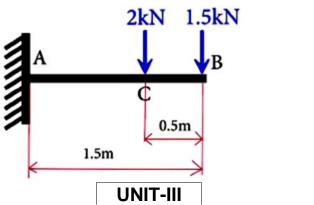
¹²M 1 3

UNIT-II

4. Draw BMD and SFD of the beam shown in the figure and indicate point of contra-flexures, if any?

12M 2 4

12M


2

3

4

5


5. Draw SFD and BMD of the beam shown in the figure and indicate maximum Bending Moment and maximum Shear Force in the beam.

A simply supported beam of length 4m, is subjected to a point load of 10 kN acting at a distance of 1m from one of the supports. E = 200GPa. The beam is triangular in cross section with base 100mm and height 150mm. calculate maximum bending stress developed in the beam?

OR

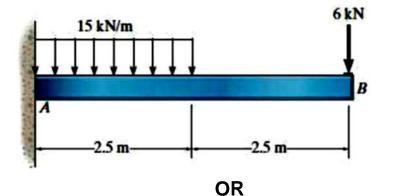
 A symmetrical I section as shown in figure (all dimensions are in mm) is subjected to a vertical sheer force of 100kN. Draw shear stress distribution by showing the salient values of shear stress at critical locations.

12M 3 5

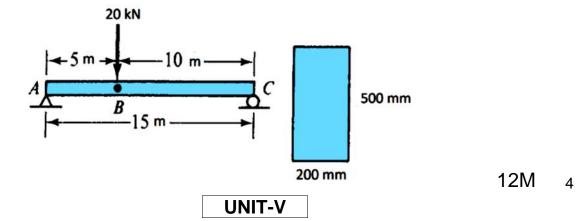
12M

4

4


5

3


2

UNIT-IV

A cantilever beam shown in figure is made of uniform circular section of diameter 100mm. E = 200MN/m². Determine slope and deflection at the free end?

 A prismatic beam of wood with E= 80GPa is subjected to eccentric point load as shown in figure. Determine deflection just below the load. Also calculate slopes at supports.

 A thin cylinder with closed ends of 600mm diameter and 2m long has a shell thickness of 12mm. If it carries a fluid pressure of 2MPa, calculate change in diameter, length and volume of the cylinder use E=100GPa and Poisson's ratio 0.4 12M 5

OR

 A thin cylinder with closed ends is subjected to fluid pressure, with usual notations derive the expression for hoop and longitudinal stress.
 12M 5

*** End ***

	Н	all Ticket Numbe	er:													
	Co	ode: 20AC31T	Ľ.											R-20		
		B.Tech. I Seme		-	ial E	-	itio	ns a	nd	Nu	me		ions Decen I Methods	nber 2	2023	
	M	ax. Marks: 70				Omm		****)		Tin	ne: 3 H	lours	
	No	ote: 1. Question 2. In Part-A, e 3. Answer AL	each que	stior	n carr	ries T	wo i - A a	mark	s.		Part	:-B)				
					(C	omp	ulso	ry qı	lesti	on)						
	1.	Answer all the fo	llowing s	hort	answ	ver qu	uesti	ons	(5 X	2 = '	10M)		CC	D BL	
	a)	Write the formul	la of New	ton -	-Rap	hson	met	hod.						CC	01 L1	
	b)	Show that $(1+2)$	$(1-\nabla)$	=1										CC)2 L1	
	c)	Write Simpsons	s 1/3 rule.											CC	03 L1	
	d)	Using Euler's m	nethod, fir						e of y	/ co	rres	pondi	ing to $x = 0.2$	5,		
		given that $\frac{dy}{dx}$ =	=1+ <i>xy</i> a	nd y	= 1	when	<i>x</i> =	0.						CC	04 L3	
	e)	Write One-dime	ensional H	leat	flow	equat	tion,	Two	-dime	ensi	onal	Lapla	ace equation.	CC	05 L1	
						•		RT-B					·			
	ļ	Answer <i>five</i> que	stions b	y ch	oosi	ng or	ne q	uesti	on fr	rom	eac	h un	it (5 x 12 = 6	0 Mar	ks)	
													ſ	Marks	CO	BL
								IIT-I								
2.	a)	Find a root of th three decimal pl	•	on x ³	³ – 4x	(– 9	= 0 (using) bise	ectic	n m	ethoc	correct to	6M	CO1	L4
	b)	Find the root of	the equat	tion	x ³ + >	⟨² – 1	= 0	by u	sing l	Itera	ation	meth	nod.	6M	CO1	L4
							0	R								
3.	a)	Find a real root	of the ed	quati	on c	osx	= xe	r by	usin	g re	egula	a – fa	llsi method			
		correct to four d	lecimal pl	aces	5.									6M	CO1	L4
	b)	Using Newton-F	Raphson i	meth	od, f	ind a	root	of th	e eq	uati	on 3	x = a	$\cos x + 1$.	6M	CO1	L3
					_			IT-II			_					
4.	a)	Given $Sin 45^0 =$							⁰ =0.	819)2, S	sin60 ^c	$^{0} = 0.8660,$	~~~	000	
	LA	find Sin52 ⁰ , usi	U											6M	CO2	L4
	b)	Find the cubic p		i wni			ine to	-	ing v	aiue	es 3	•				
		f(x)	0			1 2		<u>2</u> 1			 1(6M	CO2	L4
				J			0	R								
5.	a)	Evaluate $f(9)$ k	by using l	_agra	ange	's for	mula	with	the f	follo	wing	g data	a			
		X	5	7		11		13	1	7						
		$f(\mathbf{x})$	150	392		1492	2	366	52	202				6M	CO2	L5
	b)	Find the missing	g term in	the ta	able											
		X Y			3 49.		4 54.		5 -			6 7.4		6M	CO2	L4

UNIT-III													
6.	Given that												
	x 1.5 2.0 2.5 3.0 3.5 4.0												
	y 3.375 7.0 13.625 24.0 38.875 59.0												
	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.5 and x=4.0	12M CO3 L4											
	OR												
7.	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ using												
	i) Trapezoid rule ii) Simpson's 1/3 rd rule and iii) Simpson's 3/8 th rule.	12M CO3 L5											
	UNIT-IV												
8.	mplo the Taylor's series method to find an approximate value of y at												
	$x = 0.1, 0.2, 0.3, .4$ for the Differential equation $\frac{dy}{dx} = x^2 - y, y(0) = 1.$	12M CO4 L4											
	OR												
9. a)	Using modified Euler's method, find an approximate value of y when $x = 0.2$												
	given that $y^1 = y + e^x$, $y(0) = 0$	6M CO4 L4											
b)	Using Runge-kutta fourth order method, Solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1												
	at $x = 0.2$	6M CO4 L3											
10.	UNIT-V A string is stretched and fastened to two points <i>l</i> apart. Motion is started by												
	displacing the string in the form $y = a \sin\left(\frac{fx}{l}\right)$ from which it is released at												
	time t=0. Show that the displacement of any point at a distance x from one												
	end at time t is given by $y(x,t) = a \sin\left(\frac{f x}{l}\right) \cos\left(\frac{f c t}{l}\right)$	12M CO5 L3											
	OR												
11.	Solve the one-dimensional heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ given that												

$$u(0,t)=0$$
, $u(l,t)=0$ and $u(x,0)=3\sin\left(\frac{fx}{l}\right)$, $0 < x < l$
*** End ***

		all Ticket Number :	R-20	 D]
				0000]
		3.Tech. I Semester Regular & Supplementary Examinations Dece Basic Electrical and Electronics Engineering	inper	2023	
		(Mechanical Engineering)			
	Mo	ax. Marks: 70 1	ime: 3	Hours	
	No	**************************************			
	INO	 te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 			
		3. Answer ALL the questions in Part-A and Part-B PART-A			
		(Compulsory question)			
	1.	Answer all the following short answer questions $(5 \times 2 = 10M)$		СО	BL
	a)	State right hand thumb rule.		CO1	1
	b)	Classify DC generators?		CO2	4
	c)	Define transformation ratio?		CO3	1
	d)	What is meant by breakdown voltage of Diode?		CO4	1
	e)	State the principle of CRT.		CO5	2
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$			וח
			Marks	CO	BL
_		UNIT-I			_
2.	a)	Explain in detail about static and Dynamic Emf?	6M	CO1	2
	b)	Three resistors of 30 connected in parallel are fed by a 100Volts DC	cM	CO1	~
		source. Find current through each resistor? OR	6IVI	CO1	2
3.	a)				
<i>.</i>	a)	electromagnetic induction.	6M	CO1	2
	b)	List the types of passive elements.	6M		1
	,	UNIT-II			-
1 .	a)	Classify DC generators and state the applications.	6M	CO2	4
г.	b)	State and discuss the speed control methods of a dc motor.	6M		
	5)	OR	OW	002	2
5.		How the efficiency and losses of a DC machine are calculated with			
		Swinburne's test. Explain.	12M	CO2	2
		UNIT-III			
5.		Describe the brake test on three phase induction motor.	12M	CO3	2
		OR			
7.		Describe the synchronous impedance method for evaluating the voltage			
		regulaiton of the alternator.	12M	CO3	4
		UNIT-IV			
3.	a)	Explain PNP and NPN transistors.	6M	CO4	2
	b)	Describe the V-I characteristics of diode.	6M	CO4	- 2
		OR			
).	a)	How the CE configuration is helpful in various applications.	6M	CO4	. 3
	b)	Explain the operation of half wave rectifier using PN junction diode.	6M	CO4	2
		UNIT-V			
).	a)	How a function generator works? Describe.	6M	CO5	2
	b)	List various wires and cables.	6M	CO5	2
		OR			
۱.		Considering any six domestic electrical appliances, calculate the energy			
		consumption for 30 days.	12M	CO5	2
		*** End ***			