\square

Code: 20A431T

II B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Signals \& Systems
(Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) Determine the following system for time-invariant or not. $\mathrm{y}(\mathrm{t})=\mathrm{x}(-2 \mathrm{t}) . \quad \mathrm{CO1} \mathrm{~L} 2$
b) State the properties of Hilbert transform. $\mathrm{CO} \quad$ L2
c) Explain the effects of under sampling. $\mathrm{CO} \quad \mathrm{L2}$
d) State the properties of correlation function. $\mathrm{CO} \quad \mathrm{L2}$
e) State initial and final value theorems of Z-transforms. CO5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. a) Find the even and odd parts of the signal $x(t)=e^{-2 t} \cos (t)$. $6 M \quad \operatorname{co1} \quad$ L2
b) Determine whether the system is linear time invariant \& Causal: $y(n)=x(n)+n x(n-1)$.
$6 \mathrm{M} \mathrm{CO1} \mathrm{L2}$
OR
3. a) Find the exponential Fourier series representation of the signal $x(t)=\cos ^{2} t$.
$6 \mathrm{M} \mathrm{CO1}$ L2
b) Discuss about Gibbs phenomenon.

6M CO1 L2

UNIT-II

4. a) Derive Fourier transform from Fourier series.

6M CO2 L6
b) State and prove the following properties of Fourier transform (i) Frequency shifting (ii) Differentiation in time
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 2$ OR
5. a) Compute the Fourier transform of the Rectangular pulse. 6M co2 L2
b) Compute the Fourier transform and spectrum of the signal $\mathrm{e}^{-\mathrm{alth}} \mathrm{u}(\mathrm{t})$.

UNIT-III

6. a) Explain how input and output signals are related to impulse response of a LTI system.
b) Explain causality and physical reliability of a system and hence give poly-wiener criterion.
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$

OR

7. a) Find the Nyquist rate and Nyquist interval for the following signals:
i) $x(t)=2 \operatorname{sinc}(100 \pi t)$
ii) $x(t)=-10 \sin 40 \pi t \cos 300 \pi t$
6 M CO3 L2
b) Explain about Flat-top sampling technique.

6 M CO3 L2

UNIT-IV

8. a) Derive convolution integral and also state the properties of convolution.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L6}$
b) Find the convolution of the following signals using graphical method: $x(t)=e^{-3 t} u(t) ; h(t)=u(t-3)-u(t-5)$.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

OR

9. a) If $x(t)=\sin \omega_{0} t$, find i) $R(T)$ and ii) ESD.
b) Find the autocorrelation of $x(t)=A \cos \left(w_{0} t+\theta\right)$.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

UNIT-V

10. a) Find the inverse Laplace transform of $X(s)=-\frac{1000}{s^{2}-10}$ ROC: $-10<\operatorname{Re}(s)<10$.
$6 \mathrm{M} \mathrm{CO5}$ L2
b) Compute the Laplace transform of the signal $x(t)=t e^{-2 t}$ sin2t $u(t)$ using properties of Laplace transform.
$6 \mathrm{M} \mathrm{CO5} \mathrm{~L} 2$ OR
11. a) Find the ${ }^{-}$isform of the sequence

$$
x(n)=\left(\frac{1}{2}\right)^{n} u(n)-2^{n} u(-n-1) .
$$

b) Find the inverse Z-transform of

$$
X(z)=\frac{z\left(z-\frac{1}{(}\right)}{\left({ }^{z+1}\right)} \frac{1}{(z+2)}, R O C:|z|>2
$$

6 M co5 L2
\square
Code: 20AC32T
II B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Transform Techniques \& Complex Variables

(Common to EEE and ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions
a) Find the Laplace Transform of $e^{-t} \sin 2 t$ by choosing first shifting property 1
b) State convolution theorem of Laplace Transform.
c) Write Fourier sine integral, cosine integral.
d) Test whether the function $f(z)=z^{2}$ is harmonic or not
e) Find the poles and residues at each pole of $f(z)=\frac{z}{z^{2}+1}$.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Find $L_{\left[\frac{\cos 2 t}{-\cos 3 t} t\right.}^{t}$
b) Evaluate $\iint_{0} \frac{\sin 2 t}{c} d t$

6M $1 \quad 2$ 6M

OR

3. a) Find $=55^{-2} t$

6M 1

of $\frac{\cos \frac{\sqrt{t}}{t}}{\sqrt{t}}$
6M
13

UNIT-II

4. a) Find inverse Laplace transform of $\left.\log \frac{s^{2}}{\left(\frac{+4}{2}+9\right.}\right)$

OR
5. a) Find ${ }_{L^{-1}\left[\frac{1}{\left[\frac{1}{2}+5 s+6\right.}+5\right.}$

6M 22
6M 23

UNIT-III

6. a) Find Fourier series expansion of $f^{\prime}(x)=\frac{n_{2}^{-x}}{-1}$ in $0<x<2$. 6M 3 33
b) Find Fourier cosirie integral of $\frac{-}{f(x)}=\frac{\pi x}{}$, $\ln 0<1$ Find Fourier cosir ${ }_{1 \mathrm{e}}$ integral of $f(x)=\{ \},|x| \leq 1$ and hence find $\int_{0}^{\circ}{ }^{\circ} \frac{s i n x}{-x} d x$

6M 3

OR

7. a) Obtain the cosine series for the function $f(x)=x^{2}$

b) Find trle Fourie, r Sine transform and Fourier Cosine transform of $f(x)=2^{e-5 x}+5^{e-2 x}$.

6M $3 \quad 3$

UNIT-IV

 analytic at the origin although Cauchy-Riemann equations are satisfied at that point.

12M 43

OR

9. Show that the function it. 3^{R} armonic and find

UNIT-V

10. a) Find th $\epsilon_{\text {Tay }}$ lor's series expansion of $f(z)=\frac{-z^{2}-1}{(z+2)(z+3)}$ ir the region $\left.\right|^{z \mid}<2$.
$6 \mathrm{M} \quad 5 \quad 3$
 where c is $\left.\right|^{z \mid=1}$.

6M 5
OR

6M 5
3
 where c is the circle $\left.\right|^{z+1}+\underset{\substack{i\rfloor \\ * * * \\ \text { End } \text { End }^{* * *}}}{\substack{\text {. }}}$

6M 5
3

Code: 20A433T

R-20

II B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Analog Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions
(5 X 2 = 10M $)$
a) Explain how RC coupled amplifier differ from transformer coupled amplifier.
b) Compare Voltage series and Voltage shunt feedback.
c) Why positive feedback is generally used in oscillator circuits?
d) Compare direct coupled and transformer coupled amplifiers.
e) State clamping circuit theorem.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) The hybrid parameters of a transistor used as an amplifier in the CE configuration are $h_{i e}=800, h_{f e}=46, h_{o e}=80 \times 10^{-6}$ and $h_{r e}=5.4 \times 10^{-4}$.
If $R_{L}=5 k \quad$ and $R_{s}=500$. Find $A_{i}, R_{i}, A_{v}, R_{0}$. $4 M$
b) State and prove Miller's theorem and its dual.

OR

3. a) Draw the small signal model of CE Amplifier and derive the expression for its $A_{v}, A_{l}, R_{i}, R_{o}$.
b) Explain Frequency response of RC Coupled amplifier.

UNIT-II

4. a) Determine the voltage gain, input, and output impedance with feedback for voltage series feedback having $A=-100, R_{i}=10$ $k, R_{0}=20 k \quad$ for feedback of (a) $\beta=-0.1$ and (b) $\beta=-0.5 . \quad 6 \mathrm{M} \quad 2 \quad 4$
b) Draw the circuit diagram and equivalent circuit for current shunt feedback amplifier and derive the expression for total voltage gain.

OR

5. a) Explain the relevant information, how the negative feedback improves stability reduce noise and increase input impedance?
b) If the gain of an amplifier changes from a value of -1000 by 10%, calculate the gain change if the amplifier is used in a feedback circuit having $\beta=-1 / 20$.

UNIT-III

6. a) What is Barkhausen criterion? How this condition is used in oscillator? Explain.
b) A 1 mH inductor is available. Choose the capacitor values in a Colpitts oscillator so that $f=1 \mathrm{MHz}$ and $\beta=0.25$.

OR

7. a) Why Wien-bridge oscillators are most popular in audio frequency range?
b) Derive the condition for oscillation in RC phase shift oscillator. What type of waveform does it generate? Give some advantages and disadvantages.

UNIT-IV

8. a) Draw and explain the circuit diagram of a class B npn pushpull power amplifier using transformer-coupled input.
b) Analyze the operation of Series-Fed Class-A power amplifier and derive the expression for efficiency.

OR

9. a) With suitable circuit diagram explain a Complementary Symmetry amplifier.
b) For a class B amplifier with $\mathrm{V}_{\mathrm{cc}} 25 \mathrm{~V}$ driving an 8 load, determine: (i) Maximum input power, (ii) Maximum output power and (iii) Maximum circuit efficiency

UNIT-V

10. a) State and prove clamping circuit theorem.
b) Draw the response of High pass RC circuits to sinusoidal, step, pulse, square, ramp and exponential input signals.

OR

11. a) Determine the output for the following circuits

6M 5
4
b) Design positive and negative clipper circuits and also draw their corresponding waveforms.
\square

Code: 20A432T

II B.Tech. I Semester Regular \& Supplementary Examinations February 2023

Digital Logic Design

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Distinguish between weighted and non-weighted codes with example. CO1 L3
b) Find the duality of the function $A^{\prime} B(C+D)+B^{\prime} C^{\prime} D+A B^{\prime} C$. CO 2
c) Realize full adder using two half adders and or gate.

CO3
d) Define a latch and flip-flop. CO3
e) What is the use of ASM chart? CO4

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Implement AND, OR, NOR and EX-OR gates by using NAND gates only.

6M CO1 L2
b) Convert the following to the corresponding bases
i) $(343)_{2}=()_{10}$
ii) $(7654)_{8}=()_{10}=()_{16}$

6M CO1 L2

OR

3. a) How are negative numbers represented? Represent signed numbers from +7 to -8 using different ways of representation.

6M CO1 L3
b) Explain about even and odd parity hamming code with an example, what is the drawback.

6M CO1 L2

UNIT-II

4. a) Implement the following Boolean function with only two input NAND gates $f=\left(A B^{\prime}+D^{\prime}\right) C^{\prime}+C\left(A^{\prime}+B^{\prime}\right)$.

5M CO2 L2
b) Using Quine McCluskey method and prime implicants reduction table, determine the minimal SOP expression for the following using decimal notation
$f=\Sigma m(1,4,7,9,12,14)+\Sigma \mathrm{dc}(2,13)$.
7M CO2 L3
OR
5. a) Simplify the following Boolean function with the don't conditions using K-map method $f(A, B, C, D)=\Sigma m(1,3,8,10,15)+\sum d(0,2,9)$ 6 M CO 2 L3
b) Obtain the simplified expression in sum of products for the following Boolean function
$B D E+B^{\prime} C^{\prime} D+C D E+A^{\prime} B^{\prime} C E+A^{\prime} B^{\prime} C+B^{\prime} C^{\prime} D^{\prime} E^{\prime}$. 6 M CO 2 L3
UNIT-III
6. a) Perform the realization of half adder and full adder usingdecoders and required logic gates.$6 \mathrm{M} \mathrm{CO3} \mathrm{L3}$
b) Define a multiplexer? Design a multiplexer for the function$f(x, y, z)=\Sigma m(0,2,3,5,7)$.$6 \mathrm{M} \mathrm{CO3} \mathrm{L3}$
ORCO3
7. a) Write the steps involved in designing a combinational circuit with example. 6M CO3 L3
b) With the help of truth table and simplification using K-Map,design a 2 bit comparator using basic gates.$6 \mathrm{M} \mathrm{CO3} \mathrm{L2}$
UNIT-IV
8. a) Show that the characteristic equation for the output of JK flip- flop is $Q(t+1)=J \cdot Q^{\prime}(T)+K^{\prime} \cdot Q(T)$. 6M CO3 L2
b) Explain the operation of mod-10 counter with circuit diagram. 6M CO3 L2
OR
9. a) Write the truth table of the SR, JK and T flip-flops.$6 \mathrm{M} \mathrm{CO3} \mathrm{L3}$b) Explain D flip flop.$6 \mathrm{M} \mathrm{CO3}$ L3
UNIT-V
10. Draw the diagram for serial adder and explain its operation. 12M CO4 L3
OR
11. a) Draw the ASM chart for D-Flip Flop. 6M CO4 L3
b) Write the salient features of ASM chart.$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
\square

Code: 20AC36T

R-20

II B.Tech. I Semester Regular \& Supplementary Examinations February 2023
Managerial Economics and Financial Analysis
(Common to CE \& ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Define managerial economics. CO1 L1
b) List the disadvantages of breakeven analysis. $\mathrm{CO} \quad \mathrm{L1}$
c) Write a short note on partnership business. CO3 L1
d) Mention the advantages of payback method. CO4 L2
e) State the importance of liquidity ratios. CO5 L3

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. Explain the nature and scope of managerial economics. OR
3. Explain the different types of elasticity of demand with suitable examples.

12M CO1 L2
UNIT-II
4. Explain various types of internal economies of scale.

12M CO2
L1

OR

5. From the following information relating to ABC company, you are required to find out contribution, breakeven point in units, margin of safety and profit. Given
Total fixed costs-Rs.4,500
Total variable costs-Rs.7,500
Total sales-Rs.25,000
Units sold-5,000
12M CO2

UNIT-III

6. What is meant by perfect competition market? Enumerate on price output determination in perfect competition

OR

7. Evaluate the merits of sole proprietorship business.

12M CO3

UNIT-IV

8. Discuss the various methods of discounted cash flow techniques.

OR

9. A firm is considering the following project

Cash flows in Rupees						
C_{0}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	
$-70,000$	$+10,500$	$+11,969$	$+12,129$	$+13,735$	$+14,521$	

Calculate NPV of the project, if the cost of capital is 12 percent

12M CO4 L4

UNIT-V

10. a) Elaborate the importance of various accounting concepts.

6 M co5 L1
b) Explain the importance of trail balance.

6 M co5 L1

OR

11. Journalize the following transactions in the books of Kumar.

April 2005

1 Kumar commenced business with Rs.15, 000.
2 Paid in to bank Rs.10, 000.
5 Purchased goods from B for Rs.5,000
9 Returned goods to B for Rs.2, 000.
14 Paid to B in full settlement of account Rs.1,5000
18 Received interest from the bank
Rs. 1750
21 Sold goods for cash Rs.7,000
25 Received goods worth Rs. 500 from Krishna with a complaint about damage.
26 Paid salaries Rs. 400
12M CO5

