	Hall Ticket Number :				Г			7	
	Code: 20AC32T		·			R-2	0		
II B.Tech. I Semester Regular Examinations March 2022 Transform Techniques & Complex Variables (Common to EEE and ECE)									
Max. Marks: 70 ******* Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark . 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)									
-	1. Answer all the following short answer questions	5	(5X2	2 = 10	OM)		СО	Blooms Level	
a)						C	CO1	L4	
b)) Evaluate: $L^{-1}\left[\frac{1}{s(s+2)}\right]$					C	02	L3	
c)	function $f(x) = x^2$ in the interval $[0, 2f]$.					(03	L1	
d)) Evaluate $\int_{C} \frac{1}{z} dz$, where <i>C</i> the circle is $x = 0 \le t \le 2f$.	cc	$\mathbf{ps} t, y$	= s	in <i>t</i> ,	C	04	L2	
e)		z – 1	$\frac{z^2}{1(z-2)}$	$(2)^{2}$.		C	05	L4	
	PART-B			•					
	Answer <i>five</i> questions by choosing one question	froi	n each	unit (5 x 12	2 = 60 Ma Marks	rks) CO	Blooms	
	UNIT–I		e^{-at} –	e^{-bt}		Marks	00	Level	
2.	. a) Find the Laplace Transformation of $f(t)$) = -	t			6M	CO1	L3	
	b) Show that $\int_{0}^{\infty} e^{-3t} t \sin t dt = \frac{3}{50}$.	2				6M	CO1	L3	
3.	a) Find the Laplace Transform of $f(t) = t$ where $f(t+2) = f(t)$.			_		6M	CO1	L1	
	b) Find the Laplace Transformation of $f(t)$)=	t sin	^s t.		6M _{Pag}	CO1 ge 1 of	L1 3	

Code: 20AC32T

L3

L4

L2

UNIT-II

4. a) Find the inverse Laplace Transformation of

$$F(s) = \frac{3s+1}{(s+1)(s^2+2)}.$$
 12M co2 L3

OR

Solve the differential equation 5.

$$\frac{d^2 y}{dt^2} - 2\frac{dy}{dt} + y = e^t; y(0) = 2; y'(0) = -1$$

by using Laplace Transformation. 12M co2

by using Laplace Transformation.

UNIT-III Find Fourier Cosine and Sine series for the function 6. $f(x) = x - x^2 \text{ in } 0 < x < 1$. 12M CO3

OR

7. a) Find Fourier transform of
$$f(x) = \begin{cases} 1 + \frac{x}{a} & -a < x < 0\\ 1 - \frac{x}{a} & 0 < x < a\\ 0 & otherwise \end{cases}$$
.
6M cos L1

- b) Find the Fourier sine transform of $f(x) = e^{-ax}$, a > 0. 6M CO3 L1 UNIT-IV
- Show that the function $u = e^{-2xy} \sin(x^2 y^2)$ is harmonic. 8. Find the conjugate function v and express u + iv as an analytic function of Z . 12M CO4

OR

Evaluate $\int_{C} \frac{1}{z^2 + 9} dz$ where *c* is 9. (i) |z-3i| = 4 (ii) |z+3i| = 2 (iii) |z| = 5. 12M co4 L2

UNIT–V

10. a) Expand
$$f(z) = \frac{z}{(z+1)(z+2)}$$
 in Taylor series about $z = 2$.
b) State Cauchy Residue theorem and hence evaluate

$$\int_{c} \frac{\sin f z^{2} + \cos f z^{2}}{(z-1)^{2}(z-2)} dz$$
 where the contour c is $|z| = 3$.
OR
11. a) Expand $f(z) = \frac{8z+1}{z(1-z)}$ in a Laurent series valid for
 $0 < |z| < 1$.
OK
11. a) Expand $f(z) = \frac{8z+1}{z(1-z)}$ in a Laurent series valid for
 $0 < |z| < 1$.
OK
OK

*** End ***

Hall Ticket Number :								
Code: 20A433T	R-20							
Il B.Tech. I Semester Regular Examinations March 2022 Analog Circuits (Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours								

 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 								
<u>PART-A</u> (Compulsory question)								
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	CO Blooms Level							
 a) List the benefits of hybrid parameters. 	CO1 L1							
b) Define the feedback amplifier.	CO2 L1							
c) What are conditions for Barkhausen criterion?	CO3 L1							
d) What are the applications of power amplifiers?	CO4 L1							
e) Draw the high pass RC circuit.	CO5 L1							
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)								
UNIT–I	Marks CO Bloom Level							
2. a) Draw the small signal model of CE Amplifier and de	rive							

••	aj	Draw the small signal model of OE Ampliner and derive
		the expression for its AV, AI, Ri, RO.
	b)	Explain about Millers theorem and its dual.

OR

3. a)	Derive the expressions for current gain, voltage gain, input impedance and output impedance of CE amplifier		
	using simplified hybrid model.	6M co1	L3
b)	Discuss various methods used for coupling used in		
	amplifiers with neat circuit diagrams.	6M CO1	L2

UNIT-II

- 4. a) Explain Feedback amplifier topologies with necessary diagram. 8M CO2 L2
 - b) List the characteristics of negative feedback amplifiers. 4M CO2 L1

6M CO1

6M CO1

L3

L2

Code: 20A433T

5.	a)	Explain about concept of feedback.	6M	CO2	L2
	b)	Derive the expressions of Gain, input and output resistances for a Voltage Series feedback amplifier.	6M	CO2	L3
		UNIT–III			
6.	a)	Construct RC phase shift oscillator using BJT and derive its expression for frequency of oscillations.	8M	CO3	L3
	b)	In a Wein-bridge oscillator, if the value of R is $100K$, and frequency of oscillation is 10 KHz, Calculate the value of capacitor C.	4M	CO3	L3
		OR			
7.	a)	Explain working of colpitts oscillator and derive the expression for frequency of oscillations.	8M	CO3	L2
	b)	In the Colpitts oscillator, C1=0.2 μ F and C2=0.02 μ F. If the frequency of oscillations 10kHz, Calculate the value of inductor.	4M	CO3	L3
		UNIT-IV			
8.	a)	Classify the different types of power amplifiers and explain them briefly.	4M	CO4	L2
	b)	With neat diagram, explain Series fed directly coupled Class A Power Amplifier and determine its maximum efficiency.	8M	CO4	L3
		OR			
9.	a)	Discuss about Transformer coupled Class A Power Amplifier with diagram and determine its Maximum efficiency.	6M	CO4	L3
	b)	Explain the working principle of class B push pull amplifier.	6M	CO4	L2
		UNIT–V			
10.	a)	Draw the low pass RC circuit and derive response of it when it is applied with step input.	8M	CO5	L3
	b)	Prove high pass RC circuit act as differentiator.	4M	CO5	L3
		OR			
11.	a)	State and prove clamping circuit theorem.	6M	CO5	L3
	b)	Draw positive and negative clamper circuits and explain. *** End ***	6M	CO5	L2

Page **2** of **2**

Ha	all Ticket Number :													
Cod	le: 20A432T							J				R	-20	
	ll B.Tech.	ISem	ester	Reg	gulai	Exc	amir	natio	ons M	Nard	ch 20)22		
		otropi	-		Log			-	aina	orin	a l			
Max	. Marks: 70	ectronia	22 QH	ucc	וחחכ	UTIIC	.ano		Igine	enn	g)	Time	: 3 Hou	Jrs
Note	e: 1. Question Paper	consist	s of ty		***** arts (]		- A ar	nd P e	art_F	R)				
Note	2. In Part-A, each 3. Answer ALL th	questio	n carr	ies T n Pa i	wo r	nark	κ.		ai t-1	•)				
			(C	-	ulsor		estio	1)					ום	
1. /	Answer all the follo	owing s	short	ansv	wer c	lues	tions	6	(5	X 2	= 10	M) C	()	ooms .evel
a) [Determine the va	alue of	x if	(19:	3)x=	(62	3) ₈					C	D1	L2
b) \	What is a K-Map	?										C	D 2	L5
c) [Draw the Full Ad	der log	gic d	iagra	am.							C	D 3	L6
d) [Differentiate betw	ween (Comb	bina	tiona	al &	Sec	quei	ntial	Cir	cuit.	C	D 3	L6
e) l	ist the Limitation	ns of F	inite	Sta	ate N	/lach	nine	•				C	D4	L2
	A		•		PAR'		6		1	• (=	10	(0 M-		
	Answer <i>five</i> questio	ns by cr	loosin	g one	e que	stion	Iron	n eac	n un	11 (5	X 12 :	Mark 00 Mark	-	Blooms
				JNI	[_]									Level
. a)	Convert the Hexadecimal a	•	01.1	101)		านm	ber	in	to	De	cima		1 CO1	L2
b)	State De Morga logic.	an's Tl	neore			xpla	in w	/ith	exa	mpl	e an		1 co2	2 L3
				OF	R									
. a)	Explain about c				•			•					1 CO1	L2
b)	The Hamming of errors- four pari		and		d pai					ct it	if an	•	1 CO1	L2
. a)	Simplify the fol form using k –M	•	Boo	olea		ncti	on f	or i	nini	mal	SO	Ρ		
	F(A,B,C,D) = m	n(0,1,2	,3,5,	7,8,	9,11	,14))					8N	1 co2	2 L5
b)	Prove the ident	ity of t	he fo	llow	ving	equ	atio	n.						
	a'b+(bc)'+ab+b	o'c=1										4N	1 CO2	2 L5
				OF										
. a)	Find the duality F=ABC+A'B'C'-		•					ollo	winę	g fui	nctio		1 co2	2 L5

		Code: 20A432T					
	b)	Express the following function in to SSOP form.					
		F(X,Y,Z)=XZ'+X'Y+Y'Z	5M	CO2	L5		
		UNIT–III					
6.	a)	Explain about 4 Bit Binary Adder with suitable diagram.	6M	CO3	L6		
	b)	Implement the function $F(A, B, C) = m(1, 3, 5, 6)$ using					
		2:1 MUX.	6M	CO3	L6		
		OR					
7.	a)	Design 3 to 8 Decoder using basic gates.	8M	CO3	L6		
	b)	Differentiate between MUX and DEMUX	4M	CO3	L6		
		UNIT–IV					
8.	a)	Summarize the SR, JK, D & T flip-flops with characteristic					
		table.	8M	CO3	L2		
	b)	Implement Master Slave JK flip flop using NAND Gates.	4M	CO3	L6		
		OR					
9.	a)	List the steps in synchronous sequential circuit design	6M	CO3	L6		
	b)	What is race around condition in JK flip flop and how it is					
		eliminated?	6M	CO3	L6		
		UNIT–V					
10.	a)	Explain State Diagram and State Table with an example?	8M	CO4	L2		
	b)	Compare Mealy and Moore Machines.	4M	CO4	L2		
		OR					
11.	a)	Describe the features of ASM chart.	6M	CO4	L2		
	b)	Specify the Capabilities of Finite State Machine.	6M	CO4	L2		
		*** End ***					

П	all Ticket Number :			
Coc	le: 20AC36T		20	
	II B.Tech. I Semester Regular Examinations March 202 Managerial Economics and Financial Analysis			
	(Common to CE & ECE)			
Ma	<. Marks: 70 *********	Time:	3 Hou	rs
Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
	(Compulsory question)			
	1. Answer all the following short answer questions $(5 \times 2 = 7)$	10M)	СО	Bloom
a)	Scope of managerial economics		CO2	Level L1
b)	Internal and external economies of scale		CO1	L1
c)	Characteristics of perfect competition.		CO2	 L2
d)	Significance of capital		CO3	L3
e)	Purpose of ratio analysis		CO3	L3
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 =$	60 Mai	·ks)	
		Marks	со	Blooms Level
	UNIT–I			2010
a)	Illustrate the measurement of elasticity of demand.	7M	CO3	L1
b)	Explain the significance of elasticity of demand.	5M	CO2	L1
	OR			
	Define demand forecasting. Explain the quantitative	4014	000	
	methods of demand forecasting.	12M	CO3	L1
a)	UNIT–II State the objectives of break-even analysis.	6M	CO1	L2
-	Highlight the assumptions of break-even analysis.		CO3	L2
0)	OR		000	
a)	Define cost. Explain different cost concepts used in the			
- /	process of cost analysis.	6M	CO3	L2
b)	Discuss the properties of Cobb-Douglas production function.	6M	CO2	L2
	UNIT–III			
a)	State the features of monopoly. Analyse the firm's revenue curves under monopoly.		CO1 CO3	L2 L2

		OR			2040301		
7.		Discuss about various forms of privorganizations.	vate sector business	12M	CO2	L2	
		UNIT–IV					
8.	a)	Explain the advantages and limitative Value (NPV) technique in capital but		8M	CO2	L3	
	b)	A project will cost '200,000 and will g flows of '70,000. What is the projec	4M	CO2	L3		
OR							
9.		Illustrate the procedure of calculating return (ARR). Discuss its limitations	12M	CO3	L3		
		UNIT–V					
10.	a)	Define trial balance. Explain the obit.	pjectives in preparing	5M	CO3	L3	
	b)	Prepare a trial balance for the mont 2021:					
		Cash a/c	50,500				
		Madhu capital a/c	30,000				
		Interest from bank	3,000				
		Discount (credit)	250				
		Sales	35,000				
		David a/c	3,000				
		Purchase returns a/c	500				
		Bank a/c	10,500				
		Rent a/c	2,500				
		Salaries a/c	500				
		Entertainment expenses	150				
		Purchase a/c	2,000				
		Sales returns a/c	300	7M	CO3	L4	
		OR					
11.	a)	Define 'ratio'. Discuss the importance	ce of ratio analysis.	6M	CO2	L3	

b) Classify the ratios and explain uses of each group. 6M CO2 L3

*** End ***

	R-20	
Code: 20A431T II B.Tech. I Semester Regular Examinations March 2022		
Signals and Systems		
(Electronics and Communication Engineering)		
Max. Marks: 70 Ti	ime: 3 Hou	rs
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 		
(Compulsory question)	Bl	ooms
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$		evel
Define causal and non-causal signal. Give one example for each.	CO1	L1
) State and prove time shifting property of Fourier transform	CO2	L2
) State sampling theorem	CO3	L2
) Write any two properties of convolution.	CO4	L3
) Find the Z-transform and its ROC of $(n + k)$.	CO5	L4
PART-B		
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$	Marks)	
	Marks CO	Blooi Lev
UNIT–I		Leve
a) Write short notes on the following signals:		
(i) Unit step (ii) Unit impulse (iii) Unit ramp (iv) Signum function	6M cor	I
b) What are the basic operations of signals? Illustrate any		
	6M CO1	
three operations with one example for each operation.		
three operations with one example for each operation. OR		
OR	6M cor	
OR	6M co ²	
OR a) State and prove any two Fourier series properties	6M co ²	
OR a) State and prove any two Fourier series properties b) Find the trigonometric form of Fouries series of the	6M co ²	I
OR a) State and prove any two Fourier series properties b) Find the trigonometric form of Fouries series of the waveform shown in Fig	6M co ²	
 OR a) State and prove any two Fourier series properties b) Find the trigonometric form of Fouries series of the waveform shown in Fig. 	6M co ²	
 OR a) State and prove any two Fourier series properties b) Find the trigonometric form of Fouries series of the waveform shown in Fig. 		
 OR a) State and prove any two Fourier series properties b) Find the trigonometric form of Fouries series of the waveform shown in Fig. 	6M co	
 OR a) State and prove any two Fourier series properties b) Find the trigonometric form of Fouries series of the waveform shown in Fig. 		
 OR a) State and prove any two Fourier series properties b) Find the trigonometric form of Fouries series of the waveform shown in Fig. 		I

		C	ode: 20	A431T	
	b)	State and prove any three Fourier transform properties. OR	6M	CO2	L2
5.	a)	Find the Fourier transform of the following signal			
		$x(t) = e^{- t }$ for -2 t 2			
		= 0 otherwise	6M	CO2	L5
	b)	State and discuss about Hilbert transform.	6M	CO2	L2
6.		What is an LTI system? Explain its properties. Derive an expression for the Transfer function of an LTI system.	6M	CO3	L2
	b)	Obtain the conditions for the distortion less transmission through a system	6M	CO3	L2
_	、	OR			
7.	a)	With the help of graphical example explain sampling theorem for band limited signals.	6M	CO3	L2
	b)	interval for			
		i) x (t) = 2 sinc (100 пt) ii) x(t) = sinc (80 пt) sinc (120 пt) UNIT–IV	6M	CO3	L2
8.		Perform the convolution of the following signals by			
		graphical method. $x_1(t) = e^{-3t} u(t); h(t) = u(t + 3)$	12M	CO4	L3
		OR			
9.	a)	State and prove properties of correlation.	6M	CO4	L3
	b)	Define and prove Parseval's energy theorem.	6M	CO4	L3
10.	a)	The unilateral Laplace transform of f (t) is			
		What is the unilateral Laplacetransform of $\overline{t + s + 1}_{s - + s + 1}$	6M	CO5	L5
	b)	Find t is the urgilateral captace transform ft f(t). I the inverse Lapt e transform of x(s) = 5(s+5) / [s(s+3)(s+7)]; Re(s) > -3	6M	CO5	L5
11.	a)	State and prove frequency shifting and time convolution properties of z-transform.	6M	CO5	L5
	b)	Find the inverse Z-transform of $x(z) = \frac{z+2}{4z^2-2z+3}$	6M	CO5	L5