\square
Code: 20AC32T
II B.Tech. I Semester Regular Examinations March 2022
Transform Techniques \& Complex Variables
(Common to EEE and ECE)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions
a) Find $L[\sin 3 t \cos 2 t]$
b) Evaluate: $L^{-1}\left[\frac{1}{s(s+2)}\right]$
c) Find the Fourier coefficient a_{n} of the Fourier series expansion for the function $f(x)=x^{2}$ in the interval $[0,2 \pi]$.
d) Evaluate $\int_{C} \frac{1}{z} d z$, where C the circle is $x=\cos t, y=\sin t$,

$$
0 \leq t \leq 2 \pi .
$$

e) Find the poles and residues of the function $\frac{z^{2}}{(z-1)(z-2)^{2}}$.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO

UNIT-I

2. a) Find the Laplace Transformation of $f(t)=\frac{e^{-a t}-e^{-b t}}{t}$.
b) Show that $\int_{0}^{\infty} e^{-3 t} t \sin t d t=\frac{3}{50}$.

6M co1
3. a) Find the Laplace Transform of $f(t)=t^{2}, 0<t<2$ where $f(t+2)=f(t)$.

6M co1
b) Find the Laplace Transformation of $f(t)=t \sin ^{3} t$.

UNIT-II

4. a) Find the inverse Laplace Transformation of

$$
F(s)=\frac{3 s+1}{(s+1)\left(s^{2}+2\right)} .
$$

OR

5. Solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y=e^{t} ; y(0)=2 ; y^{\prime}(0)=-1
$$

by using Laplace Transformation.
12M co2

UNIT-III

6. Find Fourier Cosine and Sine series for the function $f(x)=x-x^{2}$ in $0<x<1$.

OR

7. a) Find Fourier transform of $f(x)=\left\{\begin{array}{ll}1+\frac{x}{a} & -a<x<0 \\ 1-\frac{x}{a} & 0<x<a \\ 0 & \text { otherwise }\end{array}\right.$.

6M co3
b) Find the Fourier sine transform of $f(x)=e^{-a x}, a>0$.

6M co3

UNIT-IV

8. Show that the function $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is harmonic. Find the conjugate function v and express $u+i v$ as an analytic function of Z.

12M co4

OR

9. Evaluate $\int_{C} \frac{1}{z^{2}+9} d z$ where c is
(i) $|z-3 i|=4$
(ii) $|z+3 i|=2$
(iii) $|z|=5$.
12M co4

UNIT-V

10. a) Expand $f(z)=\frac{z}{(z+1)(z+2)}$ in Taylor series about $z=2$.

6M cos
b) State Cauchy Residue theorem and hence evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where the contour C is $|z|=3$.

OR

11. a) Expand $f(z)=\frac{8 z+1}{z(1-z)}$ in a Laurent series valid for $0<|z|<1$.
b) State Cauchy Residue theorem and hence evaluate $\int_{C} \frac{1}{(z-1)(z+2)^{2}} d z$ where the contour C is
(i) $|z|=\frac{3}{2}$
(ii) $|z|=3$.

6M cos

Hall Ticket Number :
Code: 20A433T

R-20

II B.Tech. I Semester Regular Examinations March 2022

Analog Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{co} \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) List the benefits of hybrid parameters.
b) Define the feedback amplifier.

CO2 L1
c) What are conditions for Barkhausen criterion?

CO3 L1
d) What are the applications of power amplifiers?

CO4 L1
e) Draw the high pass RC circuit.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO

UNIT-I

2. a) Draw the small signal model of CE Amplifier and derive the expression for its AV, AI, Ri, RO.

6M co1
b) Explain about Millers theorem and its dual.
$6 \mathrm{M} \mathrm{CO1}$

OR

3. a) Derive the expressions for current gain, voltage gain, input impedance and output impedance of CE amplifier using simplified hybrid model.

6M CO1 L3
b) Discuss various methods used for coupling used in amplifiers with neat circuit diagrams.

6M CO1

UNIT-II

4. a) Explain Feedback amplifier topologies with necessary diagram.

8M CO2
b) List the characteristics of negative feedback amplifiers.
$4 \mathrm{M} \mathrm{CO2}$
L1
5. a) Explain about concept of feedback. 6M CO2 L2
b) Derive the expressions of Gain, input and output resistances for a Voltage Series feedback amplifier.
6M co2 L3

UNIT-III

6. a) Construct RC phase shift oscillator using BJT and derive its expression for frequency of oscillations.
b) In a Wein-bridge oscillator, if the value of R is 100 K , and frequency of oscillation is 10 KHz , Calculate the value of capacitor C .

OR

7. a) Explain working of colpitts oscillator and derive the expression for frequency of oscillations.
b) In the Colpitts oscillator, $\mathrm{C} 1=0.2 \mu \mathrm{~F}$ and $\mathrm{C} 2=0.02 \mu \mathrm{~F}$. If the frequency of oscillations 10 kHz , Calculate the value of inductor.

UNIT-IV

8. a) Classify the different types of power amplifiers and explain them briefly.
b) With neat diagram, explain Series fed directly coupled Class A Power Amplifier and determine its maximum efficiency.

OR

9. a) Discuss about Transformer coupled Class A Power Amplifier with diagram and determine its Maximum 6M CO4 L3 efficiency.
b) Explain the working principle of class B push pull amplifier.
$6 \mathrm{M} \mathrm{CO} \quad \mathrm{L} 2$

> UNIT-V

10. a) Draw the low pass RC circuit and derive response of it
when it is applied with step input.
b) Prove high pass RC circuit act as differentiator.
4M CO5 L3

OR

11. a) State and prove clamping circuit theorem. 6M CO5 L3
b) Draw positive and negative clamper circuits and explain.
$6 \mathrm{M} \mathrm{CO5}$

Hall Ticket Number :										

Code: 20A432T
|| B.Tech. I Semester Regular Examinations March 2022

Digital Logic Design
 (Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)2. In Part-A, each question carries Two mark.3. Answer ALL the questions in Part-A and Part-BPART-A(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 M)$
Blooms
Level
a) Determine the value of x if $(193) x=(623)_{8}$ \qquadL2
b) What is a K-Map? CO2 L5
c) Draw the Full Adder logic diagram. CO3 L6
d) Differentiate between Combinational \& Sequential Circuit. CO3 L6
e) List the Limitations of Finite State Machine. CO4 L2
PART-BAnswer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. a) Convert the $(101101.1101)_{2}$ number into Decimal, Hexadecimal and octal form.
b) State De Morgan's Theorems? Explain with example and logic.
6 M CO 2 L3
OR
3. a) Explain about classification of any four binary codes. 6M CO1 L2
b) The Hamming code 101101101 is received correct it if any errors- four parity bits and odd parity is used. 6M CO1 L2
UNIT-II
4. a) Simplify the following Boolean function for minimal SOPform using k-Map method.
$F(A, B, C, D)=\sum m(0,1,2,3,5,7,8,9,11,14)$ 8M CO2 L5
b) Prove the identity of the following equation. $a^{\prime} b+(b c)^{\prime}+a b+b^{\prime} c=1$ 4M CO2 L5
OR
5. a) Find the duality and complement for the following function $F=A B C+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}$
b) Express the following function in to SSOP form.
$F(X, Y, Z)=X Z^{\prime}+X^{\prime} Y+Y^{\prime} Z$ 5M CO2 L5
UNIT-III
6. a) Explain about 4 Bit Binary Adder with suitable diagram. 6M CO3 L6b) Implement the function $F(A, B, C)=\sum m(1,3,5,6)$ using2:1 MUX.
6M CO3 L6
OR
7. a) Design 3 to 8 Decoder using basic gates. 8M CO3 L6
b) Differentiate between MUX and DEMUX 4 M CO L6
UNIT-IV8. a) Summarize the SR, JK, D \& T flip-flops with characteristictable.8M CO3L2
b) Implement Master Slave JK flip flop using NAND Gates. $4 \mathrm{M} \mathrm{CO3}$ L6
OR
8. a) List the steps in synchronous sequential circuit design 6M CO3 L6
b) What is race around condition in JK flip flop and how it is eliminated? 6M CO3 L6
UNIT-V
9. a) Explain State Diagram and State Table with an example? 8M CO4 L2
b) Compare Mealy and Moore Machines. 4 M CO L2
OR
10. a) Describe the features of ASM chart. 6 M CO L2
b) Specify the Capabilities of Finite State Machine.6M CO4L2
\square
Code: 20AC36T
II B.Tech. I Semester Regular Examinations March 2022

Managerial Economics and Financial Analysis

(Common to CE \& ECE)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad C O$
a) Scope of managerial economics CO 2
b) Internal and external economies of scale CO1
c) Characteristics of perfect competition. CO 2
d) Significance of capital CO 3
e) Purpose of ratio analysis CO3

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Illustrate the measurement of elasticity of demand.	7 M	CO 3	L 1
b) Explain the significance of elasticity of demand.	5 M	CO 2	L 1

3. Define demand forecasting. Explain the quantitative
methods of demand forecasting.
12 M
CO 3

UNIT-II

4. a) State the objectives of break-even analysis.

6M CO1
b) Highlight the assumptions of break-even analysis.

6 M CO

OR

5. a) Define cost. Explain different cost concepts used in the process of cost analysis.

6 M CO 3
b) Discuss the properties of Cobb-Douglas production function. 6 M CO 2

UNIT-III

6. a) State the features of monopoly.

4M CO1
b) Analyse the firm's revenue curves under monopoly.

8 M CO

OR

$\begin{array}{llll}\text { 7. Discuss about various forms of private sector business } \\ \text { organizations. } & 12 \mathrm{M} & \mathrm{CO} 2 \mathrm{~L} 2\end{array}$

UNIT-IV

8. a) Explain the advantages and limitations of Net Present Value (NPV) technique in capital budgeting.

8M CO2 L3
b) A project will cost ' 200,000 and will generate annual cash flows of '70,000. What is the project's payback period 4M CO2

OR

$\begin{array}{llll}\text { 9. Illustrate the procedure of calculating accounting rate of } \\ \text { return (ARR). Discuss its limitations. } & 12 \mathrm{M} & \mathrm{CO} 3 & \mathrm{~L} 3\end{array}$

UNIT-V

10. a) Define trial balance. Explain the objectives in preparing
it.
b) Prepare a trial balance for the month ending $31^{\text {st }}$ August 2021:

Cash a/c	50,500
Madhu capital a/c	30,000
Interest from bank	3,000

Discount (credit) 250
Sales 35,000

David a/c 3,000
Purchase returns a/c 500
Bank a/c 10,500

Rent a/c 2,500
Salaries a/c 500
Entertainment expenses 150
Purchase a/c 2,000
Sales returns a/c 300
OR
11. a) Define 'ratio'. Discuss the importance of ratio analysis. 6M CO2 L3
b) Classify the ratios and explain uses of each group.

6M CO2 L3
7M CO3 L4
\square
Code: 20A431T
II B.Tech. I Semester Regular Examinations March 2022

Signals and Systems

(Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Define causal and non-causal signal. Give one example for each. C01 L1
b) State and prove time shifting property of Fourier transform CO2 L2
c) State sampling theorem $\mathrm{CO3} \mathrm{~L} 2$
d) Write any two properties of convolution. CO4 L3
e) Find the Z-transform and its ROC of $\delta(n+k)$. CO5 L4

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Write short notes on the following signals:
(i) Unit step (ii) Unit impulse (iii) Unit ramp (iv) Signum function

6M CO1
L1
b) What are the basic operations of signals? Illustrate any three operations with one example for each operation.

OR

3. a) State and prove any two Fourier series properties
b) Find the trigonometric form of Fouries series of the waveform shown in Fig .

UNIT-II

6M CO1
L1

6M CO2
b) State and prove any three Fourier transform properties. 6M CO2

OR

5. a) Find the Fourier transform of the following signal

$$
\begin{aligned}
x(t) & =e^{-|t|} & & \text { for }-2 \leq t \leq 2 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

b) State and discuss about Hilbert transform.

UNIT-III

6. a) What is an LTI system? Explain its properties. Derive an expression for the Transfer function of an LTI system.

6M CO3
b) Obtain the conditions for the distortion less transmission through a system

6M CO3

OR

7. a) With the help of graphical example explain sampling theorem for band limited signals.
b) Determine the Nyquist sampling rate and Nyquist sampling interval for
i) $x(t)=2 \operatorname{sinc}(100 n t)$
ii) $x(t)=\operatorname{sinc}(80 \pi t) \operatorname{sinc}(120 \pi t)$

6M CO3 L2

$$
\begin{aligned}
& \text { UNIT-IV } \\
& \text { nof the following signals by } \\
& t)=e^{-3 t} u(t) ; h(t)=u(t+3)
\end{aligned}
$$

8. Perform the convolution of the following signals by graphical method. $x_{1}(t)=e^{-3 t} u(t) ; h(t)=u(t+3)$ OR
9. a) State and prove properties of correlation.

6 M CO4 L3
b) Define and prove Parseval's energy theorem.

6 M CO 4
10. a) The unilateral Laplace transform of $f(t)$ is What is the unilateral Laperans $\overline{s^{2}} \frac{1}{+s+1}$
b) Findit is the urgilateral acaplacetransform : $\overrightarrow{\boldsymbol{t}-\vec{f}(t) \text {. }}$ the inve ie Lapl: e transfo mof
$x(s)=5(s+5) /[s(s+3)(s+7)] ; \operatorname{Re}(s)>-3$
b) Define and prove Parsevals energy theorem.

6 M CO 2

$$
5-2
$$

CO4 L3
UNIT-V

$$
\begin{array}{r}
\text { the inve ie Lapli, e transfo } \\
x(s)=5(s+5) /[s(s+3) \\
\mathbf{O R}
\end{array}
$$

11. a) State and prove frequency shifting and time convolution properties of z-transform.
b) Find the inverse Z-transform of
