\square
Code: 20A432T
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023

Digital Logic Design

(Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{Co} \quad \mathrm{BL}$
a) Why NAND and NOR gates are called as universal gates CO1 L1
b) Explain Demorgan's theorem CO2 L2
c) Define combinational logic design $\mathrm{CO} \mathrm{L1}$
d) List two differences between combinational and sequential circuits $\mathrm{CO} \quad \mathrm{L1}$
e) Identify the two capabilities of Finite state machines CO4 L1

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO BL
2. a) Compute (351 $)_{10}-(547)_{10}$ using 9's complement method. 6M CO1 L3
b) Solve (111011) $)_{2}$ (110111) $)_{2}$ using 2's complement approach. 6M CO1 L3 OR
3. a) Generate Hamming code for the given data 1100 using Odd 8M CO1 L3
parity
b) What is the BCD and binary equivalent of given (47) $)_{10}$

4M CO1 L1
4. a) Design a NAND gate circuit for OR operation.

5M CO2 L6
b) Determine minimal SOP using K-map, and realize using NOR

7M L3 gates $F=\pi(0,1,2,4,6,7,9,11,15)+d(3,10,14)$

CO2

OR

5. a) Solve the minimal expression using Boolean algebra
$6 \mathrm{M} \mathrm{CO2}$ L3 $F=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B C+A B C^{\prime}$
b) Determine minimal SOP using Tabulation method
$6 \mathrm{M} \mathrm{CO2}$ L3 $F=\sum_{m}(1,2,3,4,5,6,7,9,11,15,20,21,23,31)$

UNIT-III

6. Develop a circuit to identify Prime numbers between 0 to 12 12M CO3 L6 using Decoder
7. a) Design a Half adder operation using 4×1 Multiplexer. 6M CO3 L6
b) Design a 3 bit binary ripple carry adder 6M CO3 L6
UNIT-IV
8. a) Compare Asynchronous and Synchronous Counters 6M CO3 L5
b) What is the characteristic table and characteristic equation for 6M CO3 L1SR flip-flop?
OR
9. Design a 3-bit synchronous updown counter using JK flip flops. 12M CO3 L6
UNIT-V
12M CO4 L3
10. Obtain the state diagram for the given state table 12 M

PS	NS,Z	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
A	$\mathbf{F , 0}$	$\mathbf{B}, \mathbf{1}$
B	$\mathbf{A , 0}$	$\mathbf{A , 1}$
C	$\mathbf{B , 0}$	$\mathbf{C}, \mathbf{1}$
D	$\mathbf{C , 0}$	$\mathbf{B}, \mathbf{1}$
E	$\mathbf{D , 0}$	$\mathbf{A , 1}$
F	E,1	$\mathbf{F , 1}$
		OR

11. a) List the capabilities and limitations of finite state machines. 6M CO4 L1
b) Compare Mealy and Moore machines. 6 M CO L5
Hall Ticket Number : :
Code: 20AC36T
II B.Tech. I Semester Regular \& Supplementary Examinations December 2023
Managerial Economics and Financial Analysis
(Common to CE \& ECE)
Time: 3 Hours Time: 3 Hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
12. In Part-A, each question carries Two marks.
13. Answer ALL the questions in Part-A and Part-BPART-A(Compulsory question)
14. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) What is Demand Schedule? 1 L1
b) List out the determinants of cost 2 L1
c) Briefly explain about monopoly. 3d) What is profitability index4 L1
e) What is going concern concept? 5 L1
PART-BAnswer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
UNIT-I2. a) Define law of demand. What are its exceptions? Explain.6M 1 L2
b) Explain nature and scope of Managerial economics. 6M 1 L2
OR
15. Write a short note on the following. i) Survey Method
ii) Expert Opinion Method iii) Test Marketing 12M 1 L2
UNIT-II4. a) Define production. Explain the law of variable proportions ofthe production.6M 2 L2
b) Explain Law of Returns to scale with appropriate examples. 6M 2 L2
OR
16. a) What do you mean by Iso-Quants? Explain the law of returns to scale of production. 6M 2 L2
b) Define Break-Even-Point. Explain Assumptions and uses of Break Even Analysis 6M 2 L2
UNIT-III
17. Discuss why perfect Competition is better form of competitionwhen compared to Monopoly.
18. a) Explain the features of partnership company. What are its advantages and disadvantages?
b) What are the different forms of business organizations? Comment on their relative merits and demerits.

6M 3 L2

UNIT-IV

8. From the following information calculate the net present value of the two projects and suggest which of the project should be accepted assuming a discounting rate is 10\% (I year 0.909, II Year 0.857, III Year 0.751, IV Year 0.698, V Year 0.591)

	Project X	Project Y
Investment	Rs 20,000	Rs, 30,000
Estimated Life	5 Years	5 years
Scrape value	Rs 1000	Rs 1000

Project cash flows are as follows

Year	Project X	Project Y
1	5,000	20,000
2	10,000	10,000
3	10,000	5,000
4	3,000	3,000
5	2,000	2,000

OR
12M 4 L4
into consideration while raising sources of capital?

UNIT-V

10. Journalize the following transactions in the books of Mr. Hari.

April 2022

1. Mr. Hari started business with cash Rs. 50,000.
2. Purchased furniture for cash Rs. 10,000.
3. Purchased goods for cash Rs. 25,000.
4. Bought goods from Mr. Kamalesh Rs. 15,000.
5. Sold goods for cash Rs. 36,000.
6. Sold goods to Mr. Ram for Rs. 30,000.
7. Paid cash to Mr. kamalesh Rs. 15,000.
8. Received cash from Mr. Ram Rs. 18,000.
9. Purchased goods from Mr. Sohan Rs. 6,000.
10. Paid rent for office Rs. 1,000.
11. Received commission Rs. 750.
12. Paid salary to Mr. Bopal Rs. 1,200
13. The following trading and profit and loss account of a Fantacy Ltd. For the year 31/03/2011 is given below.

Particulars	Amount	Particulars	Amount
To Opening stock	76,250	By Sales	$5,00,000$
To Purchases	$3,15,250$	By Closing stock	98,500
To Carriage	2,000		
To Wages	5,000		5,98,500
To Gross profit c/d	$2,00,000$		b/d
Total	$\mathbf{5 , 9 8 , 5 0 0}$	Total	By Gross profit b/d
To Administration expenses	$1,01,000,000$		
To Selling and distribution expenses	12,000	By Non operating (Profit on sale of shares)	6,000
To Non operating expenses	2,000	7,000	$\mathbf{2 , 0 6 , 0 0 0}$
To Financial expenses	84,000	Total	
To Net profit c/d	$\mathbf{2 , 0 6 , 0 0 0}$		
Total			

Calculate:

i. Gross profit ratio
ii. Expenses ratio
iii. Operating ratio
iv. Net profit ratio
v. Operating (net) profit ratio
\square
Code: 20A431T
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023

Signals \& Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions
(5 X 2 = 10M)
a) Given a system with the input $x(t)=2 e^{-3 t}$ and the output $y(t)=4 e^{-3 t}$ CO1 determine whether the system is time-invariant. Justify your answer.
b) State and explain the linearity and frequency-shifting properties of Fourier transforms.
c) Define the concept of distortion less transmission and explain its significance in signal processing. What are the conditions for distortion CO less transmission through an LTI system?
d) Explain the relationship between the autocorrelation function and the energy density spectrum of a signal.
e) Determine the ROC for the z-transform of the sequence $x[n]=1 /(n+1)^{2}$ and analyze the implications for the inverse z-transform.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL
2. a) Evaluate the exponential Fourier Series of the following signal and also draw magnitude and Phase spectrum.

b) A continuous-time signal $x(t)$ is shown in Fig. Sketch and label each of the following sianals. i) $-2 x(2 t-3)$ ii) $3 \times(-3 t+2)$

OR

3. a) Evaluate the exponential Fourier Series of the following signal and also draw magnitude and Phase spectrum.

$6 \mathrm{M} \mathrm{CO1}$
b) Calculate the even and odd components of the signal $x(t)$.

UNIT-II
6M co1
L3
4. a) Explain how Fourier transform is developed from Fourier series.
$6 \mathrm{M} \mathrm{CO2}$ L2
b) Determine the Fourier transform of $x(t)=u(2 t)$, where $u(t)$ is the unit step function.
$6 \mathrm{M} \mathrm{CO2}$ L3

OR

5. a) State and prove time shifting and frequency scaling properties of Fourier transform.
$6 \mathrm{M} \mathrm{CO} \quad \mathrm{L} 2$
b) Determine out the Fourier Transform of $x(t)=e^{-a t} \sin \left(w_{o} t\right)$ $u(t)$

6 M CO L3

UNIT-III

6. a) What are the different techniques of Sampling? Explain each with neat sketch.

4M CO3 L2
b) Consider an LTI system with input $x(t)=e^{-3 t} u(t)$ and impulse response $h(t)=e^{-3 t} u(t)$. Determine the output response $y(t)$.

8M CO3 L3

OR

7. a) What is an LTI system? Explain its properties. Derive an expression for the transfer function of an LTI system.
$6 \mathrm{M} \mathrm{CO} ~ \mathrm{~L} 2$
b) Derive the relation between bandwidth and rise time of a system.

6M CO3
L3
8. a) State and prove the properties of Cross-correlation.
b) Compute the convolution of $y[n]=x[n]$ * $h[n]$, where

$$
\begin{aligned}
& \mathrm{x}[\mathrm{n}]=\left\{\begin{array}{l}
1 ; 3 \leq \mathrm{n} \leq 8 \\
0 ; \text { otherwise and }
\end{array}\right. \\
& \mathrm{h}[\mathrm{n}]=\left\{\begin{array}{l}
1 ; 4 \leq \mathrm{n} \leq 6 \\
0 ; \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
8 \mathrm{M} \mathrm{CO4}
$$

OR

9. a) State and prove the relation between auto correlation function and energy/power spectral density function.

4M CO4 L2
b) Let $x(t)=u(t-3)-u(t-5)$ and $h(t)=e^{-3 t} u(t)$. Compute the convolution of the $y(t)=x(t)$ * $h(t)$ using graphical method.

UNIT-V

10. a) State and Prove i) Linearity ii) Differentiation in Time iii) Convolution in Time Properties of Laplace Transform. 6 M CO5 L2
b) Determine the Laplace Transform of

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & =2 \mathrm{t} / \mathrm{T} ; 0 \leq t \leq T / 2 \\
& =(2-2 \mathrm{t}) / \mathrm{T} ; \mathrm{T} / 2 \leq t \leq T
\end{aligned}
$$

OR
11. a) Distinguish between one-sided and two sided z transforms and its region of convergence.
$6 \mathrm{M} \mathrm{Co5} \mathrm{L2}$
b) Determine Inverse Z Transform of

$$
\mathrm{X}(\mathrm{Z})=\frac{\mathrm{z}\left(\mathrm{z}^{2}-4 \mathrm{z}+5\right)}{(\mathrm{z}-1)(\mathrm{z}-2)(\mathrm{z}-3)} \text { for ROC }|z|<1
$$

Hall Ticket Number : \square
Code: 20AC32T
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023 Transform Techniques \& Complex Variables
(Common to EEE \&ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions (5 X $2=10 \mathrm{M}$)
a) Find the Laplace transform of $\sin 2$
b) Find the inverse Laplace transforms of $\frac{\mathrm{S}^{2}}{\left(\frac{s^{2}}{s-2)^{3}}\right.}$
c) Write the Dirichlet's conditions.
d) If $w=\log z$, find $\frac{\substack{\text { le } \\ \frac{z}{d z}}}{\substack{2}}$
e) Find the nature and location of singularities of the function $=\frac{\sin z}{z}$

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

6M CO1 L3
b) Find the Laplace transform of the function

$$
\begin{array}{cl}
f(t)=\sin \omega t, & 0<t<\pi / \omega \\
0 & , \pi / \omega<t<2 \pi / \omega
\end{array}
$$

3. a) Find the Laplace transform of $\frac{e^{2} \cos a t}{-\frac{\cos b t}{t}}$

6 M CO1 L1
b) Find the Laplace transforms of tsinat
$6 \mathrm{M} \mathrm{CO1} \mathrm{~L} 1$
4. Find the inverse transforms of $\frac{\text { UNIT-II }}{\frac{(\mathbf{T}-11}{(s-1)-1}\left(s^{5}+3+2 s+5\right)}$

12M CO2 L3
OR
5. Solve $\left(D^{3}-3 D^{2}+3 D-1\right) y=t^{2} e^{t}$
given that $y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2$.

UNIT-III

6. If $f(x)=|\cos x|$, expand expand $f(x)$ as a fourier series in the interval $(-\pi, \pi)$.

12M CO3 L4

OR

7. Find the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}1-2 & 1 \\ 0, i_{x \mid} \mid>1\end{array}\right\}$

1: 12M CO3

UNIT-IV

8. Evaluate, using Cauchy's integral formula: $\int_{c}{ }_{\sum^{2} \frac{2}{2} \frac{\pi z}{-1} d z}$ around a rectangle with vertices $2 \pm i,-2 \pm i$.
$12 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

OR

9. Find the orthogonal trajectories of the family of curves $x^{4}+y^{4}-6 x^{2} y^{2}=$ constant.

12M CO4 L3

UNIT-V

10. Find the Taylor's expansion of $f(z)=\frac{z^{3}}{z^{3}+z}+\frac{1}{2}$ about $z=i$.

12 M CO5 L3

OR

טா
11. Find the residue of $f(z)=\frac{z^{3}}{(z-1)^{4}(z-2) \frac{(z-3)}{}}$ at its poles and hence evaluate $\dot{f}_{c} f(z) d z$ where ζ is the circle $|z|=2.5 \quad 12 \mathrm{M} \quad$ CO5 \quad L2 ${ }_{* * * *}^{* * *}$ End ${ }^{* * *}$
|| B.Tech. I Semester Regular \& Supplementary Examinations December 2023

Analog Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) State Miller's theorem. 1 L1
b) Discuss the amplifier characteristics that get affected by negative feedback. 2 L1
c) Explain the factors effecting the stability of oscillators. 3 L1
d) Compare the linear wave shaping with non-linear wave shaping. $4 \quad$ L2
e) Draw the basic circuit diagram of negative peak clamper circuit. $5 \quad$ L4

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Draw the h-parameter equivalent circuit for a typical common base amplifier and derive expression for A_{i}, A_{v}, R_{i} and R_{0}.

6M 1 L2
b) A CE amplifier is driven by a voltage source of internal resistance $R s=600$ and load impedance is $R L=1 \mathrm{~K}$, $R 1=R 2=10 \mathrm{~K}$. The h-parameters are hfe=50, hie=1100 hoe $=25 \mu \mathrm{~A} / \mathrm{V}$ and hre $=2 \times 10^{-4}$. Compute the current gain Ai, input resistance Ri, voltage gain Av and output resistance Ro with exact model

OR

3. a) Derive the equations for voltage gain, current gain, input impedance and output admittance for a BJT using low frequency h-parameter model for CC configuration
b) For a CE amplifier given $I_{E}=2.5 \mathrm{~mA}, \mathrm{~h}_{\mathrm{fe}}=140, \mathrm{~h}_{\mathrm{oe}}=20 \mathrm{~s}$ and $h_{o b}=0.5$ s. Draw hybrid equivalent circuit.

UNIT-II

4. Draw the block diagram of current shunt feedback amplifier and derive the expression for $R_{i f}$ and $R_{\text {of }}$.

OR

5. a) Show that current-series negative feedback increases the input
impedance and Increases the output impedance.
b) Draw the voltage series feedback amplifier and explain its operations.

6M 2 L2

UNIT-III

Abstract

6. a) Starting from the description of a generalized Oscillator, derive the expression for frequency of Oscillation in a Colpitts Oscillator. b) A Colpitts oscillator is designed with $\mathrm{C}_{1}=100 \mathrm{pF}$ and $\mathrm{C}_{2}=7500 \mathrm{pF}$. Find the range of inductance values if the frequency of oscillation vary between 950 KHz and 2050 KHz .

\section*{OR} 7. a) Derive the expression for the phase shift as a function of frequency for the feedback network of RC phase shift oscillator. b) What are the merits of crystal oscillators? Draw the circuit diagram.

UNIT-IV

8. a) Sketch the circuit diagram of a push-pull amplifier and explain its working.
b) Analyze the operation of Series-Fed Class-A power amplifier and derive the expression for efficiency.

5M 4 L2

7M 4 L3

OR

9. a) Describe the operation of Class B Push pull amplifier and show how even harmonics are eliminated.
b) Derive the expression for maximum conversion efficiency for a Transformer coupled Class A power amplifier.

UNIT-V

10. a) Obtain the expression for response of a low-pass RC circuit excited by a pulse input. Plot the typical responses for different time constants.
b) Design a diode clamper circuit to clamp the positive peaks of the input signal at zero level. The frequency of the input voltage is 750 Hz .

OR

11. a) Draw the circuit of transistor clipper and explain its operation.
b) Design a diode clamper to restore a dc level of +5 V to an input signal of peak-to-peak value 15 V . Assume the drop across the diode is 0.7 V and the signal frequency is 1 kHz .
$6 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$

6M 5 L2

6M 5 L2
*** End ${ }^{* * *}$
6M 4 L2

6M 4 L2
-5
6 M L2

6M 5 L3

