|    | Hall <sup>-</sup>                                                 | Ticket Number :                                                                   |           |       | 1  |  |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|-------|----|--|--|--|--|--|--|--|--|
| (  | Code                                                              | : 20AC35T                                                                         | R-2       | 0     |    |  |  |  |  |  |  |  |  |
| l  | II B.Te                                                           | ech. I Semester Regular & Supplementary Examinations Dec                          | ember     | 2023  |    |  |  |  |  |  |  |  |  |
|    |                                                                   | Management Science                                                                |           |       |    |  |  |  |  |  |  |  |  |
|    | Mone                                                              | (Common CSE, AI&DS, AI&ML, CSE(AI) and CSE(DS))                                   | Time o. 2 | Hours |    |  |  |  |  |  |  |  |  |
| Ι  | Max. Marks: 70 Time: 3 Hours                                      |                                                                                   |           |       |    |  |  |  |  |  |  |  |  |
| N  | Note: 1. Question Paper consists of two parts (Part-A and Part-B) |                                                                                   |           |       |    |  |  |  |  |  |  |  |  |
|    | 2. In Part-A, each question carries <b>Two marks.</b>             |                                                                                   |           |       |    |  |  |  |  |  |  |  |  |
|    | 3                                                                 | 3. Answer ALL the questions in Part-A and Part-B                                  |           |       |    |  |  |  |  |  |  |  |  |
|    |                                                                   | <u>PART-A</u><br>(Compulsory question)                                            |           |       |    |  |  |  |  |  |  |  |  |
| 1  | . An                                                              | swer <b>all</b> the following short answer questions ( $5 \times 2 = 10M$ )       | (         | со в  | L  |  |  |  |  |  |  |  |  |
|    | a) E                                                              | xplain Management functions briefly.                                              | С         | O1 L  | 1  |  |  |  |  |  |  |  |  |
|    | b) L                                                              | ist any four functions of Human Resource Management.                              | С         | O2 L  | 1  |  |  |  |  |  |  |  |  |
|    | •                                                                 | Describe Job Production with at least two examples.                               | C         | O3 L  | 1  |  |  |  |  |  |  |  |  |
|    | ,                                                                 | Vhat do you learn from Pay Back Period method?                                    |           | :04 L |    |  |  |  |  |  |  |  |  |
|    |                                                                   | Summarize market segmentation in your own words.                                  |           | :O5 L |    |  |  |  |  |  |  |  |  |
|    | c, c                                                              | PART-B                                                                            | C         | .O5 L | _  |  |  |  |  |  |  |  |  |
|    | A                                                                 | Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 6) | 60 Marks  | s)    |    |  |  |  |  |  |  |  |  |
|    |                                                                   |                                                                                   | Marks     | CO    | BL |  |  |  |  |  |  |  |  |
|    |                                                                   | UNIT-I                                                                            |           |       |    |  |  |  |  |  |  |  |  |
| 2. | a)                                                                | Illustrate Line and Staff organization.                                           | 6M        | CO1   | L2 |  |  |  |  |  |  |  |  |
|    | b)                                                                | Tabulate the difference between Divisional and Matrix                             |           |       |    |  |  |  |  |  |  |  |  |
|    |                                                                   | Organization.                                                                     | 6M        | CO1   | L1 |  |  |  |  |  |  |  |  |
|    |                                                                   | OR                                                                                |           |       |    |  |  |  |  |  |  |  |  |
| 3. |                                                                   | Summarize Taylor's Functional Organization through a                              |           |       |    |  |  |  |  |  |  |  |  |
|    |                                                                   | line diagram along with its merits and demerits.                                  | 12M       | CO1   | L1 |  |  |  |  |  |  |  |  |
|    |                                                                   | UNIT-II                                                                           |           |       |    |  |  |  |  |  |  |  |  |
| 4. | a)                                                                | List at least 6 factors that affects Plant Location and                           |           |       |    |  |  |  |  |  |  |  |  |
|    |                                                                   | their importance in brief.                                                        | 6M        | CO2   | L2 |  |  |  |  |  |  |  |  |
|    | b)                                                                | Differentiate between Mass Production and Batch                                   |           |       |    |  |  |  |  |  |  |  |  |
|    |                                                                   | Production.                                                                       | 6M        | CO2   | L1 |  |  |  |  |  |  |  |  |
|    |                                                                   | OR                                                                                |           |       |    |  |  |  |  |  |  |  |  |
| 5. | a)                                                                | Why manpower planning is important for any organization?                          | 6M        | CO2   | L2 |  |  |  |  |  |  |  |  |
|    | b)                                                                | What are the factors that influence man power planning?                           | 6M        | CO2   | L1 |  |  |  |  |  |  |  |  |
|    |                                                                   | UNIT-III                                                                          |           |       |    |  |  |  |  |  |  |  |  |
| 6. | a)                                                                | Derive the Basic Economic Order Quantity for Basic                                |           |       |    |  |  |  |  |  |  |  |  |
|    |                                                                   | Inventory Model.                                                                  | 6M        | CO3   | L3 |  |  |  |  |  |  |  |  |
|    | b)                                                                | Demonstrate ABC analysis through a simple example.                                | 6M        | CO3   | L3 |  |  |  |  |  |  |  |  |
|    | -                                                                 |                                                                                   |           |       |    |  |  |  |  |  |  |  |  |

Code: 20AC35T

## OR

| 7. a)  | Briefly discuss factors affecting inventory control.                                                       | 6M  | CO3 | L1 |
|--------|------------------------------------------------------------------------------------------------------------|-----|-----|----|
| b)     | What do you understand from Just-In-Time theory/philosophy?                                                | 6M  | CO3 | L1 |
|        | UNIT-IV                                                                                                    |     |     |    |
| 8. a)  | Explain functions of financial management.                                                                 | 6M  | CO4 | L4 |
| b)     | 3,                                                                                                         |     |     |    |
|        | brief?                                                                                                     | 6M  | CO4 | L1 |
|        | OR                                                                                                         |     |     |    |
| 9. a)  | Describe concept of working capital.                                                                       | 6M  | CO4 | L1 |
| b)     | Differentiate between Payback Period and Accounting                                                        |     |     |    |
|        | Rate of Return methods of investment analysis.                                                             | 6M  | CO4 | L4 |
|        | UNIT-V                                                                                                     |     |     |    |
| 10. a) | Compare any two pricing methods.                                                                           | 6M  | CO5 | L5 |
| b)     | What are the challenges of using segmentation in                                                           |     |     |    |
|        | marketing?                                                                                                 | 6M  | CO5 | L1 |
|        | OR                                                                                                         |     |     |    |
| 11.    | Discuss various stages of Product Life Cycle and explain what steps companies will initiate in the decline |     |     |    |
|        | stage?                                                                                                     | 12M | CO5 | L5 |
|        | *** End ***                                                                                                |     |     |    |

| Hall Ticket Numb                                            | er:         |         |        |        |              |                    |                |              |       |        |                   |         |          | _        |    |
|-------------------------------------------------------------|-------------|---------|--------|--------|--------------|--------------------|----------------|--------------|-------|--------|-------------------|---------|----------|----------|----|
| Code: 20A532T                                               | "           | 1.      |        |        |              |                    | •              |              |       |        | .1                |         | R-20     |          |    |
| II B.Tech. I Seme                                           | ster Reg    | gula    | r & S  | Supp   | olen         | nent               | ary            | Exa          | min   | atioi  | ns De             | ecen    | nber 20  | 23       |    |
| (                                                           | Object      | Orie    | ente   | ed P   | rog          | ram                | nmir           | ng u         | sing  | g Ja   | va                |         |          |          |    |
| •                                                           | commor      | CSE     | , Ala  | &DS,   | Al8          | ιML,               | CSE            | (AI) (       | and   | CSE    | (DS))             |         | 0.11     |          |    |
| Max. Marks: 70                                              |             |         |        | *      | ***          | ****               |                |              |       |        |                   | lin     | ne: 3 Ho | urs      |    |
| Note: 1. Question P                                         | aper con    | sists   | of tv  | vo p   | arts         | (Part              | : <b>-A</b> aı | nd <b>Pa</b> | art-B | )      |                   |         |          |          |    |
| 2. In Part-A, e                                             | •           |         |        | •      |              | •                  |                |              |       | •      |                   |         |          |          |    |
| 3. Answer <b>ALI</b>                                        | the que     | stion   | s in I | Part-  | <b>A</b> ar  | nd <b>Pa</b>       | rt-B           |              |       |        |                   |         |          |          |    |
|                                                             |             |         |        |        | <u>PAR</u>   |                    |                |              |       |        |                   |         |          |          |    |
|                                                             |             |         | (Co    | mpu    | llsor        | y qu               | estio          | n)           |       |        |                   |         |          |          |    |
| 1. Answer <b>all</b> the fo                                 | •           |         |        |        |              |                    | `              | 5 X 2        | = 10  | )M )   |                   |         | CO       | BL       |    |
| a) Describe the                                             | •           | •       | •      |        |              |                    |                |              |       |        |                   |         | 1        | L1       |    |
| b) List at least to                                         |             |         | •      |        |              |                    | spate          | ch           |       |        |                   |         | 2        | L1       |    |
| c) Identify at lea                                          |             |         |        |        |              |                    |                |              | ۸۱/۸  |        |                   | . :     | 3        | L2       |    |
| <ul><li>d) Show the app</li><li>e) Define "String</li></ul> |             | •       |        |        |              |                    | mex            | lOIJ         | AVA   | prog   | IIamii            | iirig   | 4<br>5   | L2<br>L3 |    |
| e) Define "String                                           | TOKETIIZE   | FI VVI  | ша     |        | SIIIP<br>PAR | •                  |                |              |       |        |                   |         | 3        | LJ       |    |
| Answer five ques                                            | stions by   | cho     | osin   |        |              |                    | n fro          | om e         | ach : | unit ( | (5 x <sup>-</sup> | 12 = 6  | 0 Marks  | )        |    |
| 4                                                           | ,           |         |        | 9      |              |                    |                |              |       |        | (                 | -       | Marks    | •        | В  |
|                                                             |             |         |        |        | UN           | IIT-I              |                |              |       |        |                   |         |          |          |    |
| Describe the wo                                             | rking me    | chani   | ism c  | of co  |              |                    | with a         | a sup        | porte | ed pr  | ogran             | n       | 12M      | 1        | L  |
|                                                             | Ü           |         |        |        |              | OR .               |                | •            | •     | •      | Ū                 |         |          |          |    |
| Discuss the im                                              | portance    | of '    | 'this" | key    | word         | d an               | d "fii         | nalize       | ا "() | meth   | od w              | ith a   |          |          |    |
| program.                                                    |             |         |        |        |              |                    |                |              |       |        |                   |         | 12M      | 1        | L  |
|                                                             |             |         |        |        |              | IIT-II             |                |              |       |        |                   |         |          |          |    |
| Examine the ne                                              | cessity ar  | nd ap   | plica  | tion   |              |                    | d ove          | rridin       | g wit | h an   | exan              | nple.   | 12M      | 2        | L: |
| Observe that a shore                                        |             | •       | U      | - 1 1  |              | OR .               | 20.            |              |       |        | <i>c.</i>         |         |          |          |    |
| Show the advarue methods.                                   | itage of    | using   | tne    | Strir  | ig ci        | ass v              | with a         | a mir        | nımur | n or   | Tive              | string  | 12M      | 2        | L  |
| motriodo.                                                   |             |         |        |        | UN           | IT-III             |                |              |       |        |                   |         | 12.11    | _        | _  |
| Discuss the con                                             | cept of b   | uilt-in | and    | usei   |              |                    |                | ages         | . Wri | te a ı | orogra            | am to   |          |          |    |
| create user-defi                                            | •           |         |        |        |              |                    | •              | aguu         |       | .0 4 1 | J. 0 g. (         |         | 12M      | 2        | L  |
|                                                             |             | _       |        |        | (            | <b>DR</b>          |                |              |       |        |                   |         |          |          |    |
| Explain the wor                                             | •           |         |        | exc    | eptio        | n ha               | ndlin          | g wit        | h a s | amp    | le co             | de by   |          |          |    |
| highlighting the                                            | nested try  | / bloc  | cks.   |        |              |                    |                |              |       |        |                   |         | 12M      | 2        | L  |
|                                                             |             |         |        |        |              | IT-IV              |                |              |       |        |                   |         |          |          |    |
| Explain the life of                                         | cycle of Ja | ava tl  | nread  | om b   |              |                    | nea            | t diag       | gram. |        |                   |         | 12M      | 3        | L  |
| Evolain about th                                            | o vorious   | tuno    | o of   | ovoil  |              | DR<br>wilde        | ordo           | with         | 0.00  | mnla   | nroo              | ırom    | 12M      | 3        | L  |
| Explain about th                                            | le various  | гуре    | :S UI  | avali  |              |                    | Jaius          | WILII        | a 5a  | пріє   | prog              | liaiii. | I Z IVI  | 3        | L  |
| a) Illustrate the imp                                       | ortant fo   | aturo   | e of   | Δrray  |              | class              | : Mith         | eam          | nla r | roar   | am                |         | 6M       | 4        | L  |
| ,                                                           |             |         |        | •      |              |                    |                |              |       | •      | alli.             |         |          | -        |    |
| b) Explain about La                                         | ambua E     | vhies   | SIUII  | o WILI |              | iable<br><b>DR</b> | cxal           | iihie        | prog  | ıalil. |                   |         | 6M       | 4        | L  |
| Explain how the                                             | LinkedLis   | st wo   | rks. \ | Vrite  |              |                    | code           | e with       | am    | inimı  | ım of             | three   |          |          |    |
| methods of Java                                             |             |         |        |        | J. 50        |                    |                |              |       |        | 5.                |         | 12M      | 4        | L  |
|                                                             |             |         |        | *      | ** ୮         | ***                |                |              |       |        |                   |         |          |          |    |

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

| Code: 20AS33T  Il B.Tech. I Semester Regular & Supplementary Examinations December 2023  Computer System Architecture (Common to CSE, Al&DS, Al&ML, CSE(Al) and CSE(DS))  Max. Marks: 70  Time: 3 Hours  Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M)  a) Explain floating point representation with example?  CO1 L3 b) Write the two forms of boolean expression  CO2 L2 c) Write the instruction formats.  CO3 L4 e) What is virtual memory?  CO4 L3  What is virtual memory?  CO5 L4 e) What is the basis behind Karnaugh map simplification?  What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  B) Subtract the following unsigned numbers using two's complement: i) 11110011–11000011 ii) 10001101–11111000  OR  a) Explain the functional architecture of the computer system.  Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  CO2 L3  What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | На                    | II Ticket Number:  |            |        |           |       |       |            |                |       |       |         |      |         |       | 1     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|------------|--------|-----------|-------|-------|------------|----------------|-------|-------|---------|------|---------|-------|-------|
| Computer System Architecture (Common to CSE, Al&DS, Al&ML, CSE(Al) and CSE(DS))  Max. Marks: 70 Time: 3 Hours  Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B  PART-A (Compulsor) question  1. Answer all the following short answer questions (5 X 2 = 10M) CO BL  a) Explain floating point representation with example? CO1 L3  b) Write the two forms of boolean expression CO2 L2  c) Write the instruction formats. CO1 L2  d) List the components of a microprocessor? CO2 L4  e) What is virtual memory? CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL  UNIT-I  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same? 6M CO1 L2  b) Subtract the following unsigned numbers using two's complement: i) 11110011—11000011 ii) 10001101—11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. 6M CO1 L2  D) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2  UNIT-II  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cod                   | de: 20A533T        | 1          |        |           |       |       |            | J              |       | J.    | 1       |      | R-20    |       |       |
| (Common to CSE, AI&DS, AI&ML, CSE(AI) and CSE(DS)    Max. Marks: 70   Time: 3 Hours  Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question)  1. Answer all the following short answer questions (5 X 2 = 10M)   CO   BL    a) Explain floating point representation with example?   CO1   L3    b) Write the two forms of boolean expression   CO2   L2    c) Write the instruction formats.   CO1   L2    d) List the components of a microprocessor?   CO2   L4    e) What is virtual memory?   CO2   L3    PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)    What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?   6M   CO1   L2    b) Subtract the following unsigned numbers using two's complement:   i) 11110011-11000011   ii) 10001101-11111000   6M   CO2   L3    OR  a) Explain the functional architecture of the computer system.   6M   CO1   L2    D) Find 2's complement of the following   (i) 10010   (ii) 111000   (iii) 0101010   (iv) 111111   6M   CO2   L3    UNIT-II   (ii) 110011   6M   CO2   L3    UNIT-II   (iii) 111010   (iii) 111000   (iii) 0101010   (iv) 111111   (iv)  | II B                  | .Tech. I Semeste   | _          |        |           | •     |       |            |                |       |       | ons De  | ece  | mber 2  | 2023  |       |
| Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B  PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) 2. Write the two forms of boolean expression 3. Explain floating point representation with example? 4. CO1 L2 4. CO2 L4 5. Write the instruction formats. 4. CO2 L4 6. What is virtual memory? 5. CO2 L4 6. What is virtual memory? 6. CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same? 6. CO3 L2 6. Subtract the following unsigned numbers using two's complement: 6. CO4 L3 6. CO5 L3  OR 6. CO6 L3  OR 6. CO7 L2  OR 6. CO7 L3  OR | • •                   |                    |            |        |           |       |       |            |                |       |       |         |      |         |       |       |
| 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B  PART-A (Compulsory question)  1. Answer all the following short answer questions (5 X 2 = 10M)  a) Explain floating point representation with example?  CO1 L3  b) Write the two forms of boolean expression  CO2 L2  c) Write the instruction formats.  CO1 L2  d) List the components of a microprocessor?  CO2 L4  e) What is virtual memory?  CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks  CO BL  UNIT-I  a) What is the basis behind Karnaugh map simplification?  What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement:  i) 11110011-11000011 ii) 10001101-11111000  GR  a) Explain the functional architecture of the computer system.  b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ма                    |                    |            | ,JL, / | TICL      |       |       |            | 3∟(∧           | ij di | iu C. | 3L(D3)  |      | me: 3 H | Hours |       |
| 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question)  1. Answer all the following short answer questions (5 X 2 = 10M)  a) Explain floating point representation with example?  c) List the two forms of boolean expression  c) Lizt the components of a microprocessor?  d) List the components of a microprocessor?  e) What is virtual memory?  CO2 L3  PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  UNIT-I  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011-11000011 ii) 10001101-11111000  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not                   | •                  |            |        |           |       | •     |            | and <b>F</b>   | art-  | В)    |         |      |         |       |       |
| PART-A (Compulsory question)  1. Answer all the following short answer questions (5 X 2 = 10M)  a) Explain floating point representation with example?  CO1 L3 b) Write the two forms of boolean expression  CO2 L2 c) Write the instruction formats.  CO1 L2 d) List the components of a microprocessor?  CO2 L4 e) What is virtual memory?  CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL  UNIT-I  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011-11000011 ii) 10001101-11111000  OR  a) Explain the functional architecture of the computer system.  Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | •                  | •          |        |           |       |       |            | ł.             |       |       |         |      |         |       |       |
| 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) CO BL a) Explain floating point representation with example? CO1 L3 b) Write the two forms of boolean expression CO2 L2 c) Write the instruction formats. CO1 L2 d) List the components of a microprocessor? CO2 L4 e) What is virtual memory? CO2 L3  PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL UNIT-I a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same? 6M CO1 L2 b) Subtract the following unsigned numbers using two's complement: i) 11110011-11000011 ii) 10001101-11111000 6M CO2 L3  OR a) Explain the functional architecture of the computer system. 6M CO1 L2 b) Find 2's complement of the following (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2 b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | J. Allower ALL CIT | c questio  |        |           |       |       | u. C 2     |                |       |       |         |      |         |       |       |
| a) Explain floating point representation with example?  b) Write the two forms of boolean expression  co2 L2 c) Write the instruction formats.  d) List the components of a microprocessor?  e) What is virtual memory?  CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  What is the basis behind Karnaugh map simplification?  What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement:  i) 11110011-11000011 ii) 10001101-11111000  OR  a) Explain the functional architecture of the computer system.  b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  CO2 L3  CO2 L4  CO3 BL  Marks  CO BL  Marks  CO BL  OR  6M CO1 L2  CO2 L3  CO3  L4  CO3  L4  CO3  L4  CO4  L4  CO5  CO5  CO6  CO7  CO7  CO7  CO7  CO8  CO9  CO9  CO9  CO9  CO9  CO9  CO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Compulsory question) |                    |            |        |           |       |       |            |                |       |       |         |      |         | DI    |       |
| b) Write the two forms of boolean expression  c) Write the instruction formats.  d) List the components of a microprocessor?  e) What is virtual memory?  CO2 L4  e) What is virtual memory?  CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL  UNIT-I  a) What is the basis behind Karnaugh map simplification?  What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement:  i) 11110011-11000011 ii) 10001101-11111000  OR  a) Explain the functional architecture of the computer system.  b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  CO2 L4  COB L4  EXPLAIN TO BLA  CO3 L2  6M CO1 L2  CO2 L3  CO3 L3  CO3 L3  CO4 L3  CO5 L3  CO5 L3  CO6 L3  CO7 L2  CO7 L3  CO7 L3  CO7 L3  CO8 L3  CO9 L3   |                       |                    |            |        |           |       |       |            |                | •     |       | = 101   | VI ) | (       |       |       |
| c) Write the instruction formats.  d) List the components of a microprocessor?  e) What is virtual memory?  CO2 L4  e) What is virtual memory?  CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL  UNIT-I  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011–11000011 ii) 10001101–11111000  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                     |                    | -          | -      |           |       |       |            | λαιιι          | PIC:  | i     |         |      |         |       |       |
| d) List the components of a microprocessor?  (CO2 L4 e) What is virtual memory?  (CO2 L3  PART-B  Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  (DNIT-I)  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  (EM CO1 L2 (EM CO2 L3)  (EM CO3 L3  (EM CO4 L3)  (EM CO5 L3  ( | •                     |                    |            |        |           | ΟΛΡ   | 1000  | ,,,,,,,,   |                |       |       |         |      |         |       |       |
| e) What is virtual memory?  PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL UNIT-I  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011-11000011 ii) 10001101-11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                     |                    |            |        |           | oroc  | ess   | or?        |                |       |       |         |      |         |       |       |
| Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL  UNIT-I  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011-11000011 ii) 10001101-11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | •                  |            |        |           |       |       | <b>.</b> . |                |       |       |         |      |         |       |       |
| Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)  Marks CO BL  UNIT-I  a) What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011-11000011 ii) 10001101-11111000  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                     |                    | ,          |        |           | PAI   | RT-R  |            |                |       |       |         |      | ·       | J     |       |
| What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  6M CO1 L2  b) Subtract the following unsigned numbers using two's complement: i) 11110011–11000011 ii) 10001101–11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO1 L2  6M CO2 L3  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Answer five questi | ions by cl | oosii  | ng on     | _     |       |            | m ea           | ch u  | nit ( | 5 x 12  | = 60 | Marks ) | )     |       |
| What is the basis behind Karnaugh map simplification? What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  6M CO1 L2  b) Subtract the following unsigned numbers using two's complement: i) 11110011–11000011 ii) 10001101–11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO1 L2  6M CO2 L3  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Marks CO DI        |            |        |           |       |       |            |                |       |       |         |      |         |       |       |
| What are the limitations of Karnaugh map based digital logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011–11000011 ii) 10001101–11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. 6M CO1 L2 b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2 b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                    |            |        |           | UN    | IIT-I |            |                |       |       |         |      |         |       |       |
| logic circuit simplification? How do you mitigate the same?  b) Subtract the following unsigned numbers using two's complement: i) 11110011–11000011 ii) 10001101–11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. b) Find 2's complement of the following (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a)                    | What is the b      | oasis b    | ehin   | d k       | (arn  | aug   | h n        | nap            | sin   | nplif | icatio  | n?   |         |       |       |
| b) Subtract the following unsigned numbers using two's complement:  i) 11110011–11000011 ii) 10001101–11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. 6M CO1 L2  b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                    |            |        |           |       |       | _          | -              |       |       | _       |      |         |       |       |
| complement: i) 11110011–11000011 ii) 10001101–11111000 6M CO2 L3  OR  a) Explain the functional architecture of the computer system. 6M CO1 L2 b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2 b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | <b>G</b>           | •          |        |           |       | •     |            | •              |       |       |         |      | 6M      | CO1   | l L2  |
| a) Explain the functional architecture of the computer system.  b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b)                    |                    | followin   | ng     | unsi      | igne  | ed i  | num        | ber            | s l   | ısinç | g two   | o's  |         |       |       |
| a) Explain the functional architecture of the computer system.  b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | i) 11110011–1      | 100001     | 1      | ii) 1     | 000   | 110   | 1–1        | 111            | 100   | 0     |         |      | 6M      | CO2   | 2 L3  |
| b) Find 2's complement of the following  (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                    |            |        |           | 0     | R     |            |                |       |       |         |      |         |       |       |
| (i) 10010 (ii) 111000 (iii) 0101010 (iv) 111111 6M CO2 L3  UNIT-II  a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K. 6M CO1 L2  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a)                    | Explain the fun    | octional   | arch   | nited     | cture | e of  | the        | com            | nput  | er s  | ysten   | n.   | 6M      | CO1   | l L2  |
| a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b)                    | Find 2's comple    | ement o    | of th  | e fo      | llow  | ing   |            |                |       |       |         |      |         |       |       |
| <ul> <li>a) Show that a JK flip-flop can be converted to a D flip flop with an inverter between J and K.</li> <li>b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.</li> <li>6M CO2 L3</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | (i) 10010          | (ii) 11    | 100    | 00 (ii    | i) 0  | 1010  | 010        |                | (iv)  | 111   | 111     |      | 6M      | CO2   | 2 L3  |
| with an inverter between J and K.  b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram.  6M CO2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                    |            |        |           |       |       |            |                |       | _     |         |      |         |       |       |
| b) What is register? Explain the function of bidirectional shift register with parallel load with the help of diagram. 6M co2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a)                    |                    | •          | •      |           |       |       | vert       | ted            | to a  | a D   | flip fl | op   | CN 4    |       |       |
| register with parallel load with the help of diagram. 6M co2 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>ل</b> ا            |                    |            |        |           |       |       | \n -       | . <b>f </b> ኤ: | dira  | oti o | اما ما  | h:f± | IVIO    | CO1   | ı L2  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D)                    | •                  | •          |        |           |       |       |            |                |       |       | iai Si  | IIIL | 6M      | CO'   | ) I 2 |
| OIL COLORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | rogiotor with pe   | aranor ic  | Juu    | ** 1 (1 1 |       |       | ان م       | aid            | grai  | • • • |         |      | OIVI    | 002   | L LJ  |

2.

3.

4.

Code: 20A533T

| 5.  | a) | Compare combinational circuit and sequential circuit                  | 6M   | CO1 | L4 |
|-----|----|-----------------------------------------------------------------------|------|-----|----|
|     | b) | Draw and explain the full adder using 8 to 1 multiplexer.             | 6M   | CO2 | L2 |
|     |    | UNIT-III                                                              |      |     |    |
| 6.  | a) | Write the hardware implementation for Booth's multiplication          |      |     |    |
|     |    | algorithm.                                                            | 6M   | CO2 | L2 |
|     | b) | Compare direct and indirect addressing modes.                         | 6M   | CO2 | L4 |
|     |    | OR                                                                    |      |     |    |
| 7.  | a) | Derive and explain an algorithm for adding and subtracting            |      |     |    |
|     |    | 2 floating point binary numbers                                       | 6M   | CO2 | L2 |
|     | b) | Explain hardware implementation of binary multiplier with             |      |     |    |
|     |    | example.                                                              | 6M   | CO2 | L1 |
|     |    | UNIT-IV                                                               |      |     |    |
| 8.  | a) | Explain RAM and ROM memories in suitable diagrams                     | 6M   | CO1 | L2 |
|     | b) | Explain the address translation in virtual memory                     | 6M   | CO2 | L2 |
|     |    | OR                                                                    |      |     |    |
| 9.  | a) | Explain different types of mapping functions in cache memory.         | 6M   | CO1 | L3 |
|     | b) | Write short notes on Hardwired Control and Micro-                     |      |     |    |
|     |    | programmed Control                                                    | 6M   | CO2 | L4 |
|     |    | UNIT-V                                                                |      |     |    |
| 10. |    | What is Direct Memory Access (DMA)? What is the need                  |      |     |    |
|     |    | for DMA? Explain the working of DMA. Also mention its                 |      |     |    |
|     |    | advantages.                                                           | 12M  | CO2 | L4 |
|     |    | OR                                                                    |      |     |    |
| 11. | a) | What are interrupts? Why do we need them? How                         |      |     |    |
|     |    | interrupts are commonly handled? Assuming that currently              |      |     |    |
|     |    | an instruction is in its decode cycle and an interrupt has            |      |     |    |
|     |    | arrived. Are we going to stop the current instruction there           | GN/I | 000 |    |
|     | L١ | itself? If not, why?                                                  |      | CO2 |    |
|     | D) | Explain the functions of typical input-output interface.  *** End *** | 6IVI | CO1 | L2 |
|     |    | EIIU · · ·                                                            |      |     |    |

Page **2** of **2** 

| Hall Ticket                       | Number:                                                                                                                                                                     |                  |            |       |    |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-------|----|
|                                   |                                                                                                                                                                             |                  | R-20       |       |    |
| <b>Code: 20A5</b><br>II B.Tech. I | Semester Regular & Supplementary Exam  Database Management Syste  (Common CSE, AI&DS, AI&ML, CSE(AI) ar                                                                     | ems              | cember :   | 2023  |    |
| Max. Marks                        | : 70<br>******                                                                                                                                                              |                  | Time: 3 I  | Hours |    |
| 2. In Pa                          | stion Paper consists of two parts ( <b>Part-A</b> and <b>Par</b> ter).  Int-A, each question carries <b>Two marks.</b> Int-A and <b>Part-B</b> Int-A  (Compulsory question) | t-B)             |            |       |    |
| 1. Answer <b>al</b>               | If the following short answer questions                                                                                                                                     | (5 X 2 = 10      | M )        | СО    | BL |
| a) What are                       | the applications of database system?                                                                                                                                        |                  | (          | 01    | L1 |
| b) Define a l                     | Key                                                                                                                                                                         |                  | (          | 002   | L1 |
| c) Explain H                      | aving Clause                                                                                                                                                                |                  | (          | 03    | L2 |
| •                                 | antages of Normalizing Database schema                                                                                                                                      | l                | (          | CO4   | L2 |
| e) What is m                      | neant by Concurrency                                                                                                                                                        |                  | (          | CO5   | L2 |
| Answer fiv                        | PART-B  ve questions by choosing one question from each                                                                                                                     | ch unit ( 5 x 12 | P = 60 Mar | ks )  |    |
| 711101101 111                     | o quodiono by energing one quodion nom out                                                                                                                                  | a ( • x 12       | Marks      | CO    | BL |
|                                   | UNIT-I                                                                                                                                                                      |                  |            |       |    |
| ,                                 | are and Contrast DROP and Truncate?                                                                                                                                         |                  | 6M         | CO1   |    |
| b) What                           | are the Responsibilities of Database Adn                                                                                                                                    | ninistrator?     | 6M         | CO1   | L1 |
|                                   | OR                                                                                                                                                                          |                  |            |       |    |
| , .                               | n DDL, DML and TCL                                                                                                                                                          | _                |            | CO1   |    |
| b) Comp                           | are and Contrast File System and DBMS  UNIT-II                                                                                                                              | 3?               | 6M         | CO1   | L2 |
| 4. a) Explai examp                | n one-one, one-many many-many relation<br>oles                                                                                                                              | onships with     | 6M         | CO2   | L3 |
| b) Explai                         | n any 3 key constrains                                                                                                                                                      |                  | 6M         | CO2   | L3 |
|                                   | OR                                                                                                                                                                          |                  |            |       |    |
| 5. a) Analyz                      | ze Various types of Relations in E-R mod                                                                                                                                    | lel              | 6M         | CO2   | L4 |
| b) Explaii                        | n Various types of attributes in E-R model w                                                                                                                                | rith examples    | 6 6M       | CO2   | L3 |

Code: 20A531T

## **UNIT-III**

6. Consider the following relations Sailors(sid, sname, rating, age) Boats(bid, bname, color) Reserves(sid, bid, day) Write the SQL statements for the following: Find the names of sailors who have reserved a Red (i) boat. (ii) List all the Red Color or Green Color Boats. Find the names of sailors who have reserved Red (iii) and Green boat. Find the names of sailors who have reserved Red (iv) or a White boat. (v) List number boats reserved by each sailor. (vi) List all sailors names 12M CO3 L4 OR Discuss various types of JOINS in Relational Database with 6M co3 examples L3 6M co3 b) Discuss about sub queries and Correlated Queries L3 **UNIT-IV** 8. a) Explain Armstrong's Axioms in Functional Dependency in **DBMS** 6M co4 L2 6M CO4 b) Explain Lossless Decomposition L3 OR 9. a) Explain 1NF and 2NF with examples 6M co4 L3 b) Explain 3NF and BCNF with examples 6M co4 L3 **UNIT-V** 10. a) What are Properties of Transaction 6M CO5 L2 b) Why concurrency control is needed demonstrate with an 6M CO5 example L3 OR 11. a) Explain Lock Based Concurrency Control 6M CO5 L3 b) Write a Transaction and explain each statement Include all TCL statements 6M CO5 L4 \*\*\* End \*\*\*

|    | На                                                                                                                     | Il Ticket Number :                      |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|----|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|----------|------------|-----------------|-----------------|-------------|----------------|-----------------|-------|--------|-------|---------------|-------|----|
|    | Cod                                                                                                                    | de: 20AC33T                             | <u> </u>        | "        | 1          | ·               |                 | l           | 1              |                 |       | _      |       | R-20          |       |    |
|    | Il B.Tech. I Semester Regular & Supplementary Examinations December 2023                                               |                                         |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|    |                                                                                                                        |                                         | _               | Disc     |            | _               | _               | _           | -              | _               |       |        |       |               |       |    |
|    | Ма                                                                                                                     |                                         | nmon C          | CSE, A   | I&DS       | 5, Al8          | kМL,            | CSE         | (AI)           | and             | CSI   | E(DS)  |       | <u>۵</u> ۰3 ⊦ | lours |    |
|    | Max. Marks: 70 Time: 3 Hours                                                                                           |                                         |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|    | Note: 1. Question Paper consists of two parts (Part-A and Part-B)                                                      |                                         |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|    | <ol> <li>In Part-A, each question carries Two marks.</li> <li>Answer ALL the questions in Part-A and Part-B</li> </ol> |                                         |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|    | <u>PART-A</u>                                                                                                          |                                         |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|    | (Compulsory question)                                                                                                  |                                         |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
| 1. | Ans                                                                                                                    | wer <i>all</i> the follo                | wing s          | hort a   | nsw        | er c            | ques            | tion        | S              | (5              | 5 X 2 | 2 = 10 | OM)   |               | CO    | BL |
| ć  | ,                                                                                                                      | xpress in the ealthy can do al          | •               |          |            |                 | the             | stat        | eme            | ent             | "Ev   | eryon  | e wh  | o is          | 1     | L1 |
| k  | o) F                                                                                                                   | ind the generati                        | ng fund         | ction    | for t      | he s            | equ             | ence        | e 1,-          | -1,1            | ,-1,1 | 1,-1   | i     |               | 2     | L1 |
| (  | c) D                                                                                                                   | efine partial ord                       | er rela         | tion.    |            |                 |                 |             |                |                 |       |        |       |               | 3     | L1 |
| (  | •                                                                                                                      | an a simple gra<br>our answer.          | aph ex          | kist w   | ith 1      | 15 v            | ertic           | ces         | eacl           | h of            | de    | gree   | 5? Ju | stify         | 4     | L1 |
| •  | •                                                                                                                      | xplain briefly ab                       | out tre         | es.      |            |                 |                 |             |                |                 |       |        |       |               | 5     | L1 |
|    | ,                                                                                                                      |                                         |                 |          |            | PAF             | RT-B            |             |                |                 |       |        |       |               |       |    |
|    | Aı                                                                                                                     | nswer <i>five</i> questio               | ns by c         | hoosi    | ng o       | ne qı           | uesti           | on fr       | om             | each            | uni   | t (5 x |       |               | -     |    |
|    |                                                                                                                        |                                         |                 |          |            | UN              |                 |             |                |                 |       |        |       | larks         | СО    | BL |
| 2. | a)                                                                                                                     | Verify whether                          | the for         | rmula    | $(\neg p)$ | $0 \wedge ($    | $p \vee q$      | $q)\big) -$ | <i>→ q</i> is  | s a t           | taut  | ology  | or    |               |       |    |
|    |                                                                                                                        | not, without cor                        |                 |          | `          |                 |                 | ,           |                |                 |       |        |       | 6M            | CO1   | L3 |
|    | b)                                                                                                                     | Show that the                           | hypoth          | eses,    | , "It i    | is no           | ot su           | ınny        | this           | s aft           | ern   | oon a  | ınd   |               |       |    |
|    |                                                                                                                        | it is colder than                       |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|    |                                                                                                                        | sunny", "If we detrip", and "if we      |                 |          |            |                 |                 |             |                |                 |       |        |       |               |       |    |
|    |                                                                                                                        | sunset", lead to                        |                 |          |            | •               |                 |             |                |                 |       |        | -     | 6M            | CO1   | L2 |
|    |                                                                                                                        | ,                                       |                 |          |            | R               |                 |             |                |                 | - ,   |        |       |               |       |    |
| 3. | a)                                                                                                                     | Obtain the PCN                          | NF and          | I PDN    | IF of      | f (¬.           | $P \rightarrow$ | R)          | $\setminus (Q$ | $\rightarrow I$ | P).   |        |       | 6M            | CO1   | L2 |
|    | b)                                                                                                                     | Show that $r$                           | $\rightarrow s$ | can      | be         | dei             | rived           | d fr        | om             | the             | e p   | remis  | ses   |               |       |    |
|    |                                                                                                                        | $p \rightarrow (q \rightarrow s), \neg$ | $r \vee p$ ar   | nd $q$ I | by u       | sing            | rule            | es of       | f infe         | erer            | ice   |        |       | 6M            | CO1   | L2 |
|    |                                                                                                                        |                                         |                 |          |            | UNI             | IT-II           |             |                |                 |       |        |       |               |       |    |
| 4. | a)                                                                                                                     | Solve the recur                         | rence           | relati   | on         |                 |                 |             |                |                 |       |        |       |               |       |    |
|    |                                                                                                                        | S(k)-S(k-1)-S(k-1)                      | 2S(k-2)         | (2) = 0  | S(0)       | =0              | ,S(1)           | =1          | •              |                 |       |        |       | 6M            | CO2   | L3 |
|    | b)                                                                                                                     | Find the genera                         | ating fu        | unctio   |            | the<br><b>R</b> | Fibo            | onac        | cci s          | equ             | enc   | e.     |       | 6M            | CO2   | L2 |
| 5. | a)                                                                                                                     | Find the genera                         | al solut        | tion o   |            |                 | urre            | ence        | rela           | atior           | 1     |        |       |               |       |    |
|    | ,                                                                                                                      | $a_n - 5a_{n-1}$                        |                 |          |            | _               |                 |             |                |                 |       |        |       | 6M            | CO2   | 12 |
|    |                                                                                                                        | I                                       | - 11            |          |            | , . • •         |                 |             |                |                 |       |        |       | O.41          | 502   |    |

Code: 20AC33T

- b) Solve the recurrence relation  $a_n 6a_{n-1} + 9a_{n-2} = 0$  for  $n \ge 2$  given that  $a_0 = 0$ , and  $a_1 = 12$ , by generating functions method.
- 6M CO2 L2

**UNIT-III** 

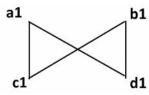
- 6. a) Let  $A = \{1, 2, 3, 4\}$  and  $B = \{a, b, c\}$  let  $R = \{(1, a), (1, b), (2, b), (2, c), (3, b), (4, a)\}$  and  $S = \{(1, b), (2, c), (3, b), (4, b)\}$ .
  - Compute (i) complement of R (ii)  $R \cup S$  (iii)  $R \cap S$ .

- 6M CO3 L2
- b) Draw the Hasse diagram for the positive divisors for 36 by considering the partial order divisibility.
- 6M CO3 L3

OR

- 7. a) If \*is the binary operation on the set of real numbers defined by a\*b=a+b+2ab, then (i) show that ( ,\*) is semigroup. (ii) find the identity element if it exists.
- 6M CO3 L2

b) Explain compatibility relation with examples.


6M CO3 L3

**UNIT-IV** 

- 8. a) Define (i) simple graph (ii) Pendent vertex (iii) Indegree and Outdegree of a vertex.
- 6M CO4 L2

b) Show that the following graphs are isomorphism.





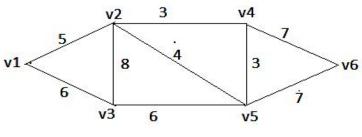
6M CO4 L3

OR

- 9. a) Define the following with examples: (i) Degree of a vertex(ii) Complete Graph (iii) Regular graph.6M
  - 6M CO4 L2
  - b) Define (i) Euler's path (ii) Euler circuit (iii) Hamiltonian path (iv) Hamiltonian circuit.
- 6M CO4 L2

UNIT-V

10. a) What is meant by Pendant Vertices? Explain.


4M CO5 L2

b) Distinguish DFS and BFS with examples.

8M CO5 L4

OR

11. Explain Kruskal's algorithm and find the shortest spanning tree for the following weighted graph.



12M CO<sub>5</sub> L<sub>4</sub>