Code: 1G633

II B.Tech. I Semester Supplementary Examinations May 2018

Fluid Mechanics

(Civil Engineering)

Max. Marks: 70
Time: 3 Hours

Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Two coaxial glass tube forming an annulus with small gap are immersed in water in a trough. The inner and outer radii of the annulus are r_{i} and r_{0} respectively. What is the capillary rise of water in the aannulus if σ is the surface tension of water in contact with air?
b) A differential manometer connected at the two points A and B as shown in figure. At B air pressure is $9.81 \mathrm{~N} / \mathrm{cm}^{2}$ (Abs), find the absolute pressure at A .

$\mathrm{Sp} . \mathrm{gr} .=13.6$
2. a) How would you determine the horizontal and vertical components of the resultant pressure on submerged curved surface?
b) A tank of oil has a right-triangular panel near the bottom, as in Fig. Omitting p_{a}, find the (a) hydrostatic force and (b) CP on the panel.

3. a) The stream function for a two-dimensional flow is given by $\psi=3 x y$, calculate the velocity at the point $P(2,3)$. Find the velocity potential function Φ. 7M
b) The velocity potential function for a flow is given by $\Phi=X^{2}-Y^{2}$ Verify that the flow is incompressible and then determine the stream function for the flow. 7M
4. a) What are the Momentum and kinetic Energy correction factors? 4M
b) Develop the Euler's equation of motion and then derive Bernoulli's equation. List all some practical applications 10M
5. a) Explain briefly the following:
i. Hydraulic Gradient Line (HGL)
ii. Energy Gradient Line (EGL) 4M
b) Water flows through a pipe line whose diameter various from 25 cm to 15 cmin a length of 10 m . If the Darcy-Weisbach friction factor is assumed constantat 0.02 for the whole pipe, estimate the head loss in friction when the pipe isflowing full with a discharge of $0.06 \mathrm{~m}^{3} / \mathrm{sec}$.10M
6. a) How do you measure velocity of flow using pitot tube? 4M
b) A venturimeter is used for measuring the flow of petrol in a pipe line inclined at35^{0} to horizontal. The specific gravity of the petrol is 0.81 and the area of inletto throat ratio is 4 . If the difference in mercury levels in the gauge is 50 mm ,calculate the flow in liters per hour if the pipe diameter is 0.3 m . Takedischarge coefficient of discharge of the venturi meter as 0.975 .10M
7. a) Describe characteristics of Laminar and Turbulent flows? 7M
b) Explain Reynold's experiment with the help of diagram? 7M
8. a) What are the methods of dimensional analysis? Describe the Rayleigh's method for dimensional analysis. 7M
b) What is meant by geometric, kinematic and dynamic similarities? 7M

Hall Ticket Number :

Code: 1GC31

II B.Tech. I Semester Supplementary Examinations May 2018

Mathematics -II

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70

Answer any five questions

All Questions carry equal marks (14 Marks each)

1. a) Prove that the Eigen values of a triangular matrix are the diagonal elements of the matrix.
b) Verify Cayley-Hamilton theorem for the matrix

$$
A=\left[\begin{array}{ccc}
3 & 4 & 1 \\
2 & 1 & 6 \\
-1 & 4 & 7
\end{array}\right] \text { and hence find } A^{-1}
$$

2. a) Write the Fourier representation of the periodic function $f(x)=x$ in $(-\pi \pi)$.
b) Find the half range cosine series for the function $f(x)=(x-1)^{2}$ in the interval (0) 1) and hence show that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+-----=\frac{\pi^{2}}{6}$.
3. a) Form a partial differential equation by eliminating the arbitrary constants a, b, c from the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
b) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y(x, 0)=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position. Find the displacement ' y ' at any time ' t ' and at a distance ' x ' from one end.
4. a) Find the roots of the equation $x^{3}-x-4=0$ using False position method
b) Using Newton-Raphson method, find a positive root of the equation $x^{4}-x-9=0$ and correct to three decimal points.
5. a) Find the value of y at $\mathrm{x}=0.1$ by Picard's method, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$
b) Use Milne's Predictor corrector method to find $y(0.3)$ from $y^{\prime}=x^{2}+y^{2}, y(0)=1$.
6. a) Evaluate $\int_{0}^{\pi} t \sin t d t$ using the Trapezoidal rule.
b) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ using Simpson's $1 / 3$ rule and Simpson's $3 / 8$ rule .
7. a) Pr ove that $\left.\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \right\rvert\, \operatorname{Re}$ al $\left.f(z)\right|^{2}=2\left|f^{\prime}(z)\right|^{2}$, where $w=f(z)$ is analytic.
b) Show that for $f(z)=\frac{2 x y(x+i y)}{x^{2}+y^{2}}$, if $z \neq 0$

$$
=0, \quad \text { if } z=0
$$

The C-R equations are satisfied at the origin but the derivative of $f(z)$ at origin does not exists.
8. a) Evaluate $\int_{c} \frac{z^{2}-z-1}{z(z-i)} d z$, where $c:\left|z-\frac{1}{2}\right|=1$, using Cauchy's integral formula.
b) Find the Taylor's series expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+1}$ about the point
i) $z=i$
ii) $z=1$

Strength of Materials-I

(Civil Engineering)

Max. Marks: 70
Time: 3 Hours

Answer any five questions
 All Questions carry equal marks (14 Marks each)

1. a) A hollow cast iron cylinder 4 m long, 300 mm outer diameter and thickness of 50 mm is subjected to a central load on the top when standing straight. The stress produced is $75000 \mathrm{kN} / \mathrm{m}^{2}$. Assume Young's Modulus as $1.5 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$ and find i) Magnitude of the load ii) Longitudinal strain produced and iii) Total decrease in length.
b) A steel wire 2 m long and 3 mm in diameter is extended by 0.75 mm when a weight W is suspended from the wire. If the same weight is suspended from a brass wire, 2.5 m long and 2 mm in diameter, it is elongated by 4.64 mm . Determine the modulus of elasticity of brass if that of steel be $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
2. A simply supported beam of span 16 m carries concentrated loads of $4 \mathrm{kN}, 5 \mathrm{kN}, 6 \mathrm{kN}$ at distances 3,7 and 11 m respectively from the left support. Calculate maximum shear force and bending moment. Draw shear force and bending moment diagrams.
3. a) What are the Assumptions in Theory of Simple bending?
b) A 150 mm wide and 250 mm deep rectangular beam is subjected to a maximum bending moment of 750 kNm . Determine
i. The maximum stress in the beam
ii. Find out the radius of curvature for that portion of the beam where the bending is maximum, take E as $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
iii. The value of the longitudinal stress at a distance of 65 mm from top surface of the beam.
4. a) A beam of triangular section having base width 200 mm and height 300 mm is subjected to a shear force of 3 kN . Find the value of maximum shear stress, and sketch the shear stress distribution along the depth of the beam.
b) A circular beam 150 mm diameter is subjected to a shear force of 7 kN . Calculate the maximum shear stress, and sketch the shear stress distribution along the depth of the beam.
5. Determine the relation between Slope, deflection and radius of curvature of a beam.

6 A beam 3 m long, simply supported at its ends, is carrying a point load of 30 kN at the midspan. The moment of inertia of the beam (i.e. I) is $16 \times 10^{6} \mathrm{~mm}^{4}$. If E for the material of the beam $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, calculate:
i. deflection at the centre of the beam and
ii. slope at the supports
7. An element in a stressed material has tensile stresses of $500 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and 350 $\mathrm{N} / \mathrm{mm}^{2}$ (compressive) acting on two mutually perpendicular planes and equal shear stresses of $100 \mathrm{~N} / \mathrm{mm}^{2}$ on these planes. Find Principal stresses and position of the Principal planes. Find also maximum shear stress.
8. Explain the following theories of Failure:
i. Maximum Principal stress theory
ii. Maximum Principal strain theory
iii. Maximum shear strain energy theory

II B.Tech. I Semester Supplementary Examinations May 2018

Surveying

(Civil Engineering)
Max. Marks: 70

All Questions carry equal marks (14 Marks each)

1. a) With the help of a neat sketch explain Main Station, Tie Station, Main Survey line, Subsidiary line, Base line, Check line.
b) A survey line is obstructed by a high building. To prolong the line beyond the building, a 150 m long perpendicular $B C$ is set out at B. From C, two lines $C D$ and $C E$ are set out at angles of 30° and 40° with CB respectively. Determine the lengths $C D$ and $C E$ so that D and E may be on the prolongation of $A B$. If the chainage of B is 100 m , find the chainage of D. A, B are one side of the building and D, E are on the opposite side. Draw a sketch.
2. a) Define the following terms.
i. Meridian
ii. Azimuth of a line
iii. Back bearing
iv. Isoclinic lines
b) Explain with neat sketch Resection method of plotting of plane table survey
c) A traverse ABCD was run and due to obstruction, length and bearing of DA was omitted. Only the following readings were taken. Determine the length and bearing of line DA.

Line	Length (m)	Reduced Bearing
AB	44.5	$\mathrm{~N} 50^{\circ} 20^{\prime} \mathrm{E}$
BC	67.0	$\mathrm{~S} 69^{\circ} 45^{\prime} \mathrm{E}$
CD	61.3	$\mathrm{~S} 30^{\circ} 10^{\prime} \mathrm{E}$
DA	$\boldsymbol{?}$	$\boldsymbol{?}$

3. a) With the help of neat sketch, explain the characteristics of contour lines
b) Following is a page of level book. Fill in the missing readings and calculate the reduced level of all points. Apply necessary checks.

Station	BS	IS	FS	Rise	Fall	RL	Remarks
1	3.250					$\boldsymbol{?}$	BM
2	1.755		$\boldsymbol{?}$		0.750	$\boldsymbol{?}$	CP
3		1.950				$\boldsymbol{?}$	
4	$\boldsymbol{?}$		1.920			$\boldsymbol{?}$	
5		2.340		1.500		$\boldsymbol{?}$	
6		$\boldsymbol{?}$		1.000		$\boldsymbol{?}$	
7	1.850		2.185			250.00	CP
8		1.575				$\boldsymbol{?}$	
9		$\boldsymbol{?}$				$\boldsymbol{?}$	
10	$\boldsymbol{?}$		1.895		1.650	$\boldsymbol{?}$	CP
11			1.350	0.750		$\boldsymbol{?}$	Last Point

4. a) Enumerate any four methods of determination of volume of earthwork. Describe their merits \& demerits.
b) The following perpendicular offsets in meter are measured from a straight line to an irregular boundary at regular intervals of 10 m .
$h 1=8.25$, h2 $=13.85, h 3=12.25, h 4=10.85$, h5 $=12.25, h 6=13.6, h 7=15.25$, $h 8=16.85, h 9=14.95, h 10=17.35, h 11=20.05, h 12=15.9$, $h 13=12.25$, h14=12.00.
Compute the area lying between the straight line and the irregular boundary by
i. Trapezoidal rule
ii. Simpson's one third rule using (A) h1 as the first offset and (B) h14 as the first offset and h2 as last offset.
5. a) List and explain temporary adjustments of a theodolite.
b) Following observations were made on a hill top to ascertain its elevation. The height of the target P was 5 m , which was held on the hill top. Instrument stations were 100 m apart and were in line with P. find the R. L. of the top of hill.

Instrument Station	Staff readings on Bench Mark (m)	Vertical angle on target P at hill top	R L of Bench Mark (m)
0_{2}	2.550	$18^{0} 6^{\prime}$	345.580
0_{1}	1.670	$28^{0} 42^{\prime}$	345.580

6. a) The stadia readings with horizontal sight on a vertical staff held 40 m away from a tacheometer were $1.354 \& 1.880$. The focal length of the object glass was 25 cm . the distance between the object glass and trunnion axis of the tacheometer was 15 cm . calculate the stadia interval?
b) Illustrate step by step procedure to determine constants K and C of a tacheometer
7. a) Two straights Al and BI meet at a chainage of 3450 m . A right handed simple circular curve of 250 m radius joins them. The deflection angle between two straights is 50°. Tabulate the necessary data to layout a curve by Rankine's method of deflection angles. Take the chord interval as 20 m .
b) With the help of neat sketch explain procedure to set out a simple circular curve
by offsets from chard produced method.
8. a) Differentiate conventional survey instruments from Electronic distance
measurement.
b) Enumerate the instrumental errors in Electronic Distance measurement. 4M
c) Discuss the applications of Geographic Information System in Surveying. 4M
