Code: 1GC31

II B.Tech. I Semester Supplementary Examinations May 2019
Mathematics-II
(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours

Answer any five questions

All Questions carry equal marks ($\mathbf{1 4}$ Marks each)

1. a) Given the matrix $A=\left[\begin{array}{lll}1 & 7 & 5 \\ 0 & 2 & 9 \\ 0 & 0 & 5\end{array}\right]$, find the Eigen values and Eigen vectors. Prove that the sum of Eigen values is Trace of matrix A and Product of Eigen values is $|A|$.
b) Show that the Eigen values of Diagonal matrix are diagonal elements of the Matrix.
2. Obtain the Fourier series for $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in $0<x<2 \pi$
3. a) Form a partial differential equation by eliminating the arbitrary constants $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
b) Form a partial differential equation by eliminating the arbitrary function from $z=f\left(x^{2}-y^{2}\right)$.
4. Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.
5. Using Taylor's series method, compute the value of y at $\mathrm{x}=0.2$ and $\mathrm{x}=0.4$ from $\frac{d y}{d x}=x+y ; y(0)=1$.
6. From the following table of values of ' x ' and ' y ', obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1.5$

X	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

7. Show that the function $f(z)=\sqrt{\mid x y} \mid$ is not analytic at the origin although the Cauchy Riemann equations are satisfied at the origin.
8. Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region $(i):|z|<1 \quad(i i): 1<|z|<2$ (iii) : $|z|>2$ (iv) : $0<|z-1|<1$

Code: 1G531

II B.Tech. I Semester Supplementary Examinations May 2019
 Mechanics of Solids
 (Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Derive the relationship between Elastic constants.
b) A steel rod of 3 cm diameter and 5 m long is connected to two grips and

The rod is maintained at a temperature of $95^{\circ} \mathrm{C}$. Determine the stress and pull exerted when the temperature falls to $30^{\circ} \mathrm{C}$, if
(i) the ends do not yield, and (ii) the ends yield by 0.12 cm .

Take $\mathrm{E}=2 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$ and Co-efficient of linear expansion $=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
2. A simply supported beam of length 5 m carries a uniformly increasing load of $600 \mathrm{~N} / \mathrm{m}$ run at one end to $1200 \mathrm{~N} / \mathrm{m}$ run at the other end. Draw the S.F. and B.M. diagrams for the beam. Also calculate the position and magnitude of maximum bending moment.
3. a) State the assumptions involved in the theory of simple bending.
b) Derive the bending equation from first principle.
4. A simply supported wooden beam of span 2 m having a cross-section 150 mm wide by 250 mm deep carries a point load W at the centre. The permissible stress are $10 \mathrm{~N} / \mathrm{mm}^{2}$ is bending and $2 \mathrm{~N} / \mathrm{mm}^{2}$ in shearing. Calculate the safe load W .
5. a) State the assumptions made in the theory of torsion and derive torsion equation.
b) A hollow shaft of external diameter 120 mm transmits 300 kW power at 200 r.p.m. Determine the maximum internal diameter if the maximum stress in the shaft is not to exceed $60 \mathrm{NImm}^{2}$.
6. A cantilever of length $2 m$ carries a point load of 20 KN at the free end and another load of 20 KN at its center. If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$ for the cantilever then determine by moment area method, the slope and deflection of the cantilever at the free end.
7. a) Derive the expression for the crippling load when both ends of the column are hinged.
b) A solid round bar 6 cm in diameter and 2.5 m long is used as a strut. One end of the strut is fixed while its other end is hinged. Find the safe compressive load for this strut using Euler's formula. Assume $\mathrm{E}=200 \mathrm{GPa}$ and factor of safety $=3$.
8. a) Derive Lami's equation of thick cylinders.
b) A spherical shell of internal diameter 0.9 m and of thickness 10 mm is subjected to an internal pressure of $1.4 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the increase in diameter and increase in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio is 0.33 .

Code: 1G533

|| B.Tech. I Semester Supplementary Examinations May 2019

Themodynamics

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours

Answer any five questions

All Questions carry equal marks (14 Marks each)
$* * * * * * * * *$

1. a) Classify thermodynamics systems with a suitable example for each.
b) What do you understand by macroscopic and microscopic viewpoints? Explain.
2. Explain clearly the difference between a non-flow and a steady flow process. Derive Steady Flow Energy Equation for Turbine.
3. a) An inventor reports that he has developed an engine that operates between the temperature limits of $80^{\circ} \mathrm{C}$ and $-17^{\circ} \mathrm{C}$. During the process the engine absorbs $23 \times 10^{3} \mathrm{~kJ} / \mathrm{h}$ of heat and develops 2 kW of power. Show with reason how far his claim is justified.
b) Discuss about the limitations of First law of Thermodynamics.
4. a) Define Clausius inequality and prove its statement.
b) Explain the concept of principle of increase of entropy.
5. a) Explain the combined separating and throttling calorimeter to obtain dryness fraction.
b) Describe the Mollier diagram and explain its uses.
6. a) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2 \mathrm{~m}^{3}$. If this air is expanded to a volume of $1.1 \mathrm{~m}^{3}$,find the work done and heat absorbed or rejected by the air for each of the following methods i)Isothermally, ii)Adiabatically
b) Show that for an ideal gas the internal energy depends only on its temperature.
7. a) State and prove Daltons law of partial pressures and Avogadro's law of additive volumes.
b) A gas mixture consists of $70 \% \mathrm{~N}_{2}$ and $30 \% \mathrm{CO}_{2}$ by mole basis .Determine gravimetric analysis of the mixture
8. a) An air standard Otto cycle has a compression ratio of 7. At the start of the compression process, the temperature is $30^{\circ} \mathrm{C}$. and the pressure is 1 bar . If the maximum temperature of the cycle is $1100^{\circ} \mathrm{C}$. Calculate i) The heat supplied per kg of air. ii) The network done per kg of air iii) The thermal efficiency of the cycle.
b) Explain different processes in a Dual cycle with the help of PV \& TS diagrams.
\square

II B.Tech. I Semester Supplementary Examinations May 2019

Machine Drawing

(Mechanical Engineering)
Max. Marks: 70

SECTION-I

Answer any two from the following ($2 \times 4=8$ Marks)
1 Draw the conventional representation of i) glass ii) liquids
2. Draw the T -headed bolt with dia 20 mm .
3. Draw the flat saddle key by considering the dimensions.

SECTION-II

Answer any two from the following ($2 \times 10=20$ Marks $)$
4. Draw the hexagonal headed bolt with a nut and a washer in position considering dia as 25 mm .
5. Draw the cotter joint with gib
6. Draw the split-muff coupling.

SECTION-III

Answer the following question ($1 \times 42=42$ Marks)
7. Figure shows the details of a eccentric. Assemble the parts and draw the following views:
(a) Front view - upper half in section.
(b) Top view.

