

Hall Ti	cket Number :						
Code:	1G331 R-11 / R-	13					
II B.Tech. I Semester Supplementary Examinations May 2017							
	Electronic Circuits						
Max.	(Electronics and Communication Engineering) Marks: 70 Time: 3 Ho	ours					
	Answer any Five questions All Questions carry equal marks (14 Marks each)						
1. a)	a) State millers theorem. Explain its significance in transistor circuit analysis						
b)							
	model of transistor.	7M					
2. a)	Explain about boot strapped emitter follower.	6M					
b)	Explain cascode amplifier and derive voltage gain.	8M					
3. a)	Draw the Hybrid -model for a transistor in the CE Configuration and the significance of every component in this model?	7M					
b		7M					
4. a)		7M					
b)	Briefly discuss about the effect of feedback on amplifier bandwidth	7M					
5. a)	Explain the Working of transistorized wein-bridge oscillator with neat diagram	10M					
b)	A wein bridge oscillator has a frequency of 400Hz, if the value of C is 100pF then determine the value of R.	4M					
6. a)	transformer has a turn ratio of N1:N2 of 4:1 and efficiency is 95%.calculate the following.						
	 (i) Max power output (ii) Max power discipation in each transistor 	01					
þ	(ii) Max power dissipation in each transistor Derive the expression for efficiency of series fed Class A power amplifier	8M 6M					
D,	Derive the expression for enciency of series led class A power ampliner	ON					
7. a)	Draw and explain the circuit diagram of a single tuned coupled amplifier. Also explain its operation	8M					
b)	Explain Advantages, disadvantages and applications of tuned amplifiers	6M					
8. a)	Derive expression for line regulations and load regulations	7M					
0. a) b)		7M					

Hall Ticket Number :										
Code	Code: 1G236							R-13		
II B.Tech. I Semester Supplementary Examinations May 2017 Electrical Circuit Theory (Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hour Answer any five questions All Questions carry equal marks (14 Marks each)							Hours			
1. a)	State the Ohm's law	and kirchoff la	WS							6M
b)	Using source transfo	rmation find I∟	of the	circuit s	showi	n in fi	gure			
	101		T	30	2 -m)15	n A	6 H	n L		8M
2. a)	Define the following t i) Node ii) Path iii) Lo									8M
b)	Find the current throu	ugh the 4 ohm	resisto	or in the	e circu	uit of t	figure	e by i	nodal meth	od
	N	OA D	IN N	4.1.	(Le A			6M
3. a)	Define the following t i)Cycle ii) Amplitude		orm fac	ctor						8M
b)	Find the RMS and a Hence find form factor	•			fied s	sinuso	oidal	curre	ent wavefo	orm. 6M
4. a)	20 V Ac supply. frequencies, Bandwic	Find the res dth and curren	onant t at res	freque onance	ncy, Ə	Qual	ity f	actor	, half po	wer 8M
b)	Calculate the magnit circuit at 10 KHZ be 80 and the capacitan	low the reson	•		•					
5. a)	What are the advanta	ages of three (ohase s	system	over	single	e pha	ase s	ystem	4M
b)	Derive the relation b star and delta conne	etween line a				•	•			ase 10M
Page 1 of 2								age 1 of 2		

- 6. a) Explain the comparison of electrical and magnetic circuits
 - b) An iron ring of cross sectional area 03 cm² has an air gap of 1 mm length. A coil of 600 turns wound over the ring carries a current of 2A. The mmf in the air gap is 70% of the total mmf and reluctance.
- 7. a) State and explain thevenin's theorem
 - b) Find the current in 75 ohm resistor in the circuit shown in figure using super position theorem

- 8. a) State and explain millman's theorem
 - b) Find I in the circuit shown in figure by verify reciprocity theorem

8M

8M

6M

6M

8M

6M

	Hall Ticket Number :					
	Code: 1GC32					
C	II B.Tech. I Semester Supplementary Examinations May 2017					
Engineering Mathematics						
	(Common to EEE & ECE)					
	Max. Marks: 70 Time: 3 Hours					
	Answer any Five questions All Questions carry equal marks (14 Marks each)					

a)	Reduce the following matrix into its normal form and hence find its rank.					
	$\begin{vmatrix} 2 & 3 & -1 & -1 \end{vmatrix}$					
	$A = \begin{vmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{vmatrix}$					
	$\begin{vmatrix} 3 & 1 & 3 & -2 \\ -2 & -2 & -2 \end{vmatrix}$					
b)	Solve the system of equations $x + 4y - z = -5$; $x + y - 6z = -12$; $3x - y - z = 4$ by using					
-)	Gauss elimination method.					
a)	Find the real root of the equation $3x = \cos x + 1$ using Newton-Raphson method.					
b)	Find by Taylor's series method the value of y at $x = 0.1$ and $x = 0.2$ to five places of					
	decimals from $\frac{d y}{d x} = x^2 y - 1$, $y(0) = 1$.					
2)						
a)	Fit a straight line to the following data using method of least squares.					
	x 1 2 3 4 5 y 14 27 40 55 68					
b)	y 14 27 40 55 68 Ten participants in a contest are ranked by two judges as follows:					
0)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	y 6 4 9 8 1 2 3 10 5 7					
	Calculate the rank correlation coefficient.					
a)	Form a partial differential equation by eliminating the arbitrary functions from					
	z = f(x + at) + g(x - at)					
b)	Solve the partial differential equation $pxy + pq + qy = yz$ using Charpit's method.					
a)	Obtain the Fourier series for $f(x) = x^2$ in the interval $-f < x < f$.					
b)						
,						
	Find the Fourier sine transform of $e^{- x }$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{f}{2}e^{-m}$, $m > 0$.					
	0					
a)	Find the mean, median and mode for the following data:					
	Class 0-10 10-20 20-30 30-40 40-50 50-60 Frequency 14 17 22 26 23 18 7					
b)	The probability density function of a variate X is					
/	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	P(X) k 3k 5k 7k 9k 11k 13k					
	Find (i) k (ii) $P(X < 4)$ (iii) $P(X \ge 5)$ (iv) $P(3 < X \le 6)$					
a)	The probability that a pen manufactured by a company will be defective is 0.1. If 12 such					
	pens are manufactured, find the probability that (i) exactly two will be defective, (ii) at least					
	two will be defective and (iii) none will be defective.					
b)	In a test on 2000 electric bulbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hours and S.D. of 60 hours. Estimate the number of					
	bulbs likely to burn for (i) More than 2150 hours and (ii) more than 1920 hours & but less					
	then 2160 hours (Civen $A(7, 1.92) = 0.4664$ and $A(7, 2) = 0.4772$)					

than 2160 hours. (Given A(Z=1.83)=0.4664 and A(Z=2)=0.4772)

8M

Hall Tid	cket Number :	1			
Code:	IGC34	13			
II B.Tech. I Semester Supplementary Examinations May 2017					
	Environmental Science				
Max	(Common to ECE & IT) Marks: 70 Time: 3 H	ours			
Max.	Answer any Five questions	0013			
	All Questions carry equal marks (14 Marks each)				
1. a)	Mention few institutions involved and role played by them in protecting the				
	environment.	7M			
b)	What are the reasons for the decline of ecosystem globally?	7M			
2. a)	Enumerate few conflicts over water that you have known.	7M			
b)	Write a note on alternate energy resources and their usage.	7M			
3. a)	What is over grazing? Write a note on the impact of over grazing.	7M			
b)	How soil erosion occurs. Mention few remedial measures to prevent soil erosion.	7M			
4. a)	Explain the effects caused by water pollution and how it will be controlled.	7M			
b)	Write short notes on				
	i. Thermal pollution andii. Marine pollution	7M			
		7 1 1 1			
5.	What are the characteristic features of aquatic ecosystem?	14M			
6. a)	Describe the values of biodiversity.	7M			
b)	Summarize the threats to biodiversity.	7M			
7. a)	What is Air pollution Act? Mention the postulates of Air pollution Act?	7M			
b)	Describe the best practices of solid waste management.	7M			
8. a)	Enumerate the human rights with respect to environment protection.	7M			
o. a) b)	Write notes on the impact of environment on human health.	7M			
D)		7 111			

	Hall	Ticket Number :	1				
(Cod	e: 1G332					
II B.Tech. I Semester Supplementary Examinations May 2017							
		Pulse and Digital Circuits					
	M	(Electronics & Communication Engineering) ax. Marks: 70 Answer any Five questions All Questions carry equal marks (14 Marks each)					

1.	a)	 Draw the Output Response of RC Low Pass circuit for a Step Input signal and derive the expression for Rise Time. 7 					
	b)	b) Draw the output waveforms of an RC High-Pass Circuit with Square wave input under different time constants. Explain the same.					
2.	a)	Design a diode clamper circuit to restore the positive peaks of 2 KHz input signal to a					
		voltage level equal to 6 V. Assume that the diode voltage during forward bias condition is 0.7 V.	7M				
	b)	Design a Two-level Diode Clipper circuit and explain the same with the help of Waveform and Transfer characteristics.	7M				
3.	a)	Describe the sequence of events that lead to Reverse Recovery Time, Storage Time					
		and Transition Time in a Semiconductor Diode.	7M				
	b)	Discuss the terms pertaining to Transistor Switching characteristics: i. Rise Time; ii. Delay Time; iii. Turn-On Time; iv. Storage Time; v. fall Time; vi. Turn-Off Time					
4.	a)	Explain the working of a Bistable Multivibrator circuit with the help of neat waveforms.	7M				
	b)	Derive the expressions for UTP and LTP of Schmitt Trigger.	7M				
5.	a)	Define the terms Slope Error, Displacement Error and Transmission Error. How are they related for an exponential Sweep Circuit?					
	b)	Discuss the general considerations of Miller and Bootstrap Time Base generations.	7M				
6.	a)	What is Pedestal? How does it affect the output of Sampling Gates?	7M				
	b)	Draw the Sampling Gate with Four Diodes and explain its operation.	7M				
7.	a)	With the help of a Circuit diagram and Waveforms, explain the Frequency division by an Astable Multibrator.	7M				
	b)	Illustrate the terms Synchronization and Frequency Division of a Sweep Generator.	7M				
8.	a)	Realize a 2-input NAND Gate using TTL Logic and explain the same with help of Functional table.	7M				
	b)	Realize a 2-input NOR gate using CMOS Logic and explain the same with help of Functional table.	7M				

Н	lall [·]	Ticket Number :					
Code: 1G333							
II B.Tech. I Semester Supplementary Examinations May 2017							
		Random Variables and Random Processes					
	110	(Electronics & Communication Engineering)					
	MC	ax. Marks: 70 Time: 3 Hours Answer any five guestions					
		All Questions carry equal marks (14 Marks each)					
1.	a)	i. State any two properties of cumulative distributive function	2M 2M				
	 When the two random variables are said to be uncorrelated iii. State Baye's theorem 						
	b)	i. Write the properties of conditional distribution	3M				
	2)	ii. A random variable X is known to have a distribution function $F_X(x) = u(x)[1 - e^{-x^2/b}]$,	3M				
		where <i>b</i> >0 is a constant. Find its density function.	4M				
2.	a)	i. Define mean and variance of a random variable	3M				
		ii. If the probability density function of a continuous random variable X is given by					
		$f(x) = e^{-x}$, $0 \le X \le \infty$, find the mean and variance of X	4M				
	b)	i. What is Chebychev's inequality?	2M				
		ii. For a random variable X, if a mean value $E(X) = 6$ and variance $t_x^2 = 2$ then					
		determine the second moment of X about the origin $E(X^2)$	5M				
3.	a)	i. Write the properties of joint density function	3M				
		ii. A random variable has a probability density $f_x(X) = \left\{\frac{5}{4}(1-x^2)\right\}, 0 < x \le 1$					
		0, elsewhere					
		Find I) $E(X)$ II) $E(4X+2)$ III) $E(X^2)$	4M				
	b)	i. State and prove central limit theorem	4M				
		ii. The joint probability density function of x and y is given by					
		$f(x, y) = \frac{6 - x - y}{8}, 0 \le x \le 2, 2 \le y \le 4$					
		= 0, otherwise					
		Calculate the mean and variance of x and y.	3M				
4.	a)	What is Linear Time Invariant system, explain it with an example.	7M				
_	b)	Derive the transfer function of LTI system by considering an example.	7M				
5.	a)	Briefly describe the noise bandwidth. Derive the expression for output noise power in terms of noise bandwidth	8M				
	b)	State the differences between bandpass, band-limited and narrowband processes	6M				
6.	a)	Define wide sense stationary form of a random process and show that the random process $X'(x) = A + x^{2}$					
		$X(t) = A\cos(\hat{S}_0 t + \pi)$ is wide sense stationary if it is assumed that A and \hat{S}_0 are constants	714				
		and " is a uniformly distributed random variable on (0.2) .	7M				
	b)	Two random variables X and Y have means $\bar{X} = 1$ and $\bar{Y} = 2$, variances					
		$t_x^2 = 4$ and $t_y^2 = 1$, and correlation coefficient $x_{XY} = 0.4$. The new random variables W					
		and V are defined by $W = X+3Y$, $V = -X+2Y$, find a) means b) variances c) correlations					
		and d) correlation coefficient \dots_{VW} of V and W.	7M				
7.	,	State the properties of autocorrelation	7M				
	b)	Find covariance and correlation coefficient of two random variables X and Y if $E(x) = 2$, $E(y) = 3$, $E(xy) = 10$, $E(x^2) = 9$ and $E(y^2) = 16$.	7M				
8.	a)	Describe the properties of power density spectrum	7M				
0.	b)	Derive the relationship between power spectrum and autocorrelation function.	7M				