Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code: 1G331

II B.Tech. I Semester Supplementary Examinations May 2018

Electronic Circuits

(Electronics & Communication Engineering)

Max. Marks: 70

Answer any **Five** questions

All Questions carry equal marks (**14 Marks** each)

Time: 3 Hours

1.	a)	Describe the effects of different distortions in amplifiers	6M
	b)	Draw the small signal hybrid model of CB amplifier and derive expression for its Av, Ai, and Ri & R _o .	8M
2.	a)	List the advantages and disadvantages of RC coupling.	4M
	b)	Explain cascode amplifier and derive voltage gain.	10M
3.	a)	Describe the emitter follower at high frequencies and also derive the equation for higher cutoff frequency.	7M
	b)	With hybrid equivalent circuit, derive the expressions for trans conductance.	7M
4.	a)	Why positive feedback is not suitable in amplifiers.	4M
	b)	Derive the feedback, input resistance ,voltage gain and output resistance of current series feedback circuit	10M
5.	a)	Explain the operation of RC phase shift oscillator and derive the equation for frequency of oscillations.	7M
	b)	With neat diagram explain about amplitude stability of oscillator.	7M
6.	a)	Give the classification of large signal amplifiers	4M
	b)	Explain complementary symmetry push pull amplifier	10M
7.	a)	With neat circuit diagram, explain about stagger tuned amplifier.	4M
	b)	Derive the expression for gain in single tuned amplifier.	10M
8.	a)	List different 78xx and 79xx series voltage regulators.	4M
	b)	Explain 723-voltage regulator in detail.	10M

	eket Number :	R-11 / R-13
Code: 1	.GC32 II B.Tech. I Semester Supplementary Examinations May	
	Engineering Mathematics (Common to EEE & ECE)	
Max. N	Marks: 70	Time: 3 Hours
	Answer any five questions All Questions carry equal marks (14 Marks each) ***********************************	
1. a)	Find the rank of the matrix by reducing it to the echelon form given	
	$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 2 & 2 \end{bmatrix}$	
	$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$	
	$\begin{bmatrix} 6 & 8 & 7 & 5 \end{bmatrix}$	7M
		. 7
b)	Find the Eigen values and Eigen vectors of the matrix $\begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix}$	1
		3 J 7M
2. a)		
	correct to four decimal places.	7M
b)	Solve by Euler's method the equation $\frac{dy}{dx} = \log(xy)$ for $y(1.1)$ and	y(1.2),
	given $y(1) = 2$.	7M
3. a)	Fit a second degree parabola to the following data: x: 0 1 2 3 4	
	y: 1 1.8 1.3 2.5 6.3	7M
b)	Calculate the coefficient of correlation between x and y for the following	_
	x: 105 104 102 101 100 99 98 96 93 y: 101 103 100 98 95 96 104 92 97	92 94 7M
4. a)	Form the partial differential equation from $z = f(x + y)$.	4M
b)	Solve $(p^2 + q^2)y = qz$ using Charpit's Method.	10M
5. a)	Obtain the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2$	7M
b)	Obtain a half range agains sories for $f(x)$ $\int kx$, $0 \le x \le l/2$	
۵,	Obtain a half range cosine series for $f(x) = \begin{cases} kx, & 0 \le x \le l/2 \\ k(l-x), & l/2 \le x \le l \end{cases}$	
	and hence deduce the sum of the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \infty$	78.4
	_	7M
6. a)	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, x \le 1 \\ 0, x > 1 \end{cases}$	
		7M
b)	Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$	
	(0, x > 2	7M

Code: 1GC32

7M

7. a) From the following data of marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode.

Marks: 20 30 40 50 60 70

No. of students: 8 12 20 10 6 4 7M

b) X is a continuous random variable with probability density function given by $f(x) = kx \ (0 \le x < 2)$

$$=2k\ (2 \le x < 4)$$

$$=-kx+6k \ (4 \le x < 6)$$

Find *k*. 7M

- 8. a) If the probability of a bad reaction from a certain injection is 0.001. Determine the chance that out of 2000 individuals more than two will get a bad reaction.
 - b) X is a normal variate with mean 30 and S.D. 5, find the probabilities that (i) 26 X 40, (ii) X 45.

Hall Ticket Number:

R-11 / R-13

Code: 1G332

II B.Tech. I Semester Supplementary Examinations May 2018

Pulse and Digital Circuits

MA.	ıv A	(Electronics and Communication Engineering) Narks: 70 Time: 3 Ho	ıırc
7010	i.A. 1V	Answer any five questions All Questions carry equal marks (14 Marks each)	OIS
1.	a)	Explain the RC integrator with neat input and output waveforms.	7M
	b)	Prove that for any periodic input waveform the average level of the steady state output signal for the RC high pass circuits is always Zero.	7M
2.	a)	Discuss series and shunt clipper using diode along with relevant waveforms.	7M
	b)	What is meant by comparator and explain diode differentiator comparator operation when ramp signal is applied as input signal.	7M
3.	a)	What do you mean by delay time of a transistor? What are the factors contribute to it?	7M
	b)	Write short notes on: i) Diode Switching times ii) Switching characteristics of transistor.	7M
4.	a)	What is monostable multivibrator? Explain with the help of neat circuit diagram and derive an equation for pulse width.	7M
	b)	Draw the circuit diagram for Schmitt trigger and explain its operation. What are the applications of the above circuit? Derive the expressions for UTP and LTP.	7M
5.	a)	Explain the basic principle of Miller and bootstrap time base generators.	7M
	b)	What are the different methods of generating a time base waveform? Explain them briefly.	7M
6.	a)	What is meant by sampling gates? Explain the working of four diode sampling gate with the help of neat circuit diagram.	7M
	b)	Compare the unidirectional and bidirectional sampling gates.	7M
7.	a)	Explain the method of pulse synchronization of relaxation devices with examples	7M
	b)	Illustrate the terms Synchronization and Frequency Division of a Sweep Generator.	7M
8.	a)	Explain DTL and RTL circuits with suitable circuit diagrams.	7M
	b)	Realize a 2-input NOR gate using CMOS Logic and explain the same with help of Functional table.	7M