\squareCode: 1G132
R-11/R-13
|| B.Tech. I Semester Supplementary Examinations May 2017

Digital Logic Design

(Computer Science \& Engineering)
Max. Marks: 70
Answer any Five questions
All Questions carry equal marks (14 Marks each)
$* * * * * * * * *$

1. a) Convert the given decimal number 2344 to Base 4, Base8, Base16, and BCD 8M
b) List out weighted codes and explain one in detail with example 6M
2. a) Minimize the given Boolean function $f=B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} D^{\prime} E+A^{\prime} B^{\prime} D E \quad 6 M$
b) Obtain the Dual and complement of the function $A B^{\prime}+A C+A^{\prime} B^{\prime} C$ 8M
3. a) Minimize the function $F=\Sigma(0,1,2,3,5,8,10,14)$ and implement using basic gates $8 M$
b) Minimize the function $F=\Sigma(0,1,2,3,7)$ and implement using NAND gates 6M
4. a) Design 2 to 4 Decoder 7M
b) Implement 8X1 Multiplexer by using 4X1 Multiplexers 7M
5. a) Design 3 Bit Asynchronous Up counter and explain 7M
b) Design 4 Bit serial In serial Out shift register and explain 7M
6. a) Define synchronous sequential logic circuit 4M
b) Design Mod-10 Synchronous up counter by using DFFs 10M
7. a) Define Asynchronous Counter 4M
b) Write about Pulse Mode asynchronous sequential circuits 10M
8. a) Design 4X3 PROM 8M
b) Write the HDL code for half Adder 6 M

II B.Tech. I Semester Supplementary Examinations May 2017

Electronic Devices and Circuits

(Common to CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer any Five questions
All Questions carry equal marks (14 Marks each)

1. a) Explain V-I characteristics of PN- Junction diode with neat sketches.
b) Explain the breakdown mechanism of Zener diode with relevant diagram.
2. a) With circuit and necessary wave forms, explain the operation of Half Wave Rectifier.
b) An A.C. supply of 220 V is applied to a halfwave rectifier circuit through a transformer with a turns ratio of 10:1. Find (i) DC output voltage (ii) PIV. Assume the diode is ideal.
3. a) Explain the input and output characteristics of Common Emitter configuration of BJT.
b) Explain how transistor works as an amplifier. 4M
4. a) What is biasing? Explain the need of it. List out different types of biasing methods. 8M
b) In a silicon transistor circuit with fixed bias, $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=3 \mathrm{~K}, \mathrm{R}_{\mathrm{B}}=8 \mathrm{~K} \quad, \beta=50$, $V_{B E}=0.7 \mathrm{~V}$. Find the stability factor. 6M
5. a) With a neat construction diagram explain the principle and operation of JFET. Draw its characteristics. 8M
b) Differentiate Depletion and Enhancement MOSFETS. 6M
6. a) Explain the operation of Push- pull amplifier in detail with neat sketches. 8M
b) Find the $h_{o e}$ in terms of Common Base (CB) h-parameters. 6M
7. a) What is the importance of negative feedback in amplifiers and discuss in detail about current shunt feedback amplifier. 10M
b) The Voltage gain of an amplifier without feedback is 60 dB . It decreases to 40 dB with feedback. Calculate the feedback factor. 4M
8. a) Discuss the basic concept behind the operation of a Wien-bridge oscillator with the help of suitable circuitry and derive expression for relevant oscillation frequency.8M
b) The values of the two capacitors C_{1} and C_{2} of the resonant circuit of a colpitt oscillator are $\mathrm{C}_{1}=20 \mathrm{pF}$ and $\mathrm{C}_{2}=70 \mathrm{pF}$. The inductor has a value of $22 \mu \mathrm{H}$. What is the operating frequency of oscillator? 6M
