Hall T	icket Number :													
Code: 1G131				R-11 / R-	·13									
II B.Tech. I Semester Supplementary Examinations May 2018														
Advanced Data Structures Through C++														
Man	(Common to CSE & IT)													
Max	. Marks: 70			Ans	wer	any l	Five (ques	tions				Time: 3 H	10015
	A	ll Qu	estic	ons c	arry	•	al mc *****	irks (14 M	arks	eac	:h)		
1. a)	Define Class?	Expla	ain a	bout	inline	e fun	ction	with	Exa	mple				6M
b)) Explain about o	dynai	mic r	nemo	ory a	lloca	tion a	and c	le-all	ocati	ion			8M
2. a)) Explain the cor	ncept	of fu	unctio	on ov	verloa	ading	with	an e	exam	ple.			7M
b)) Explain Base C	Class	and	Deri	ved (Class	s with	Exa	mple) .				7M
3. a)) Define Abstrac	t Dat	а Ту	pe? I	Expla	ain th	ie im	olem	enta	tion o	of Qu	leue	ADT in	
	details.		_									_		7M
bj) How we can m	easu	ire th	e pe	rform	nance	e of a	in alg	gorith	im? I	Discu	JSS ir	n detail.	7M
4.	Define Hash Ta	able?	P Dis	cuss	in de	etail a	abou	colli	sion	reso	lutio	n tec	hnique?	14M
5. a)) Define and exp	olain i	in de	tail a	bout	Prio	rity C	lueu	e AD	Т.				4M
b)) Explain about e	exter	nal s	orting	g and	d Mu	lti wa	y me	erge.					10M
6 a)) Define AVL Tr illustrations.	ees?	' Exp	olain	vario	ous s	steps	for	AVL	sea	rch t	ree i	insertion with	5M
b)) Define Binary S example.	Searc	ch Tr	ee?	Expla	ain B	inary	Sea	rch ⊺	ree	Trav	ersal	with below	
	Preorder: A B D	GC	EH	IF, I	n-oro	der:	DBO	GΑΗ	ΙΕΙ	CF.	Con	struc	t post order.	9M
7. a)) Describe insert	tion c	pera	ation	of a l	B-tre	e wit	h an	exar	nple.				7M
b) Explain about	splay	tree	s.										7M
8. a)) What are the p	rope	rties	of Co	ompr	esse	ed an	d Su	ffix tr	ies.				7M
b) Write and expla	ain B	rute	force	algo	orithn	n.							7M
						*	**							

	Ha	all Ticket Number :	1				
	Co	pde: 1G132					
		II B.Tech. I Semester Supplementary Examinations May 2018 Digital Logic Design (Computer Science and Engineering)					
	Μ	ax. Marks: 70 Time: 3 Hours					
		Answer any five questions All Questions carry equal marks (14 Marks each) ********					
1.		Convert the following:					
	a)	(4567) ₈ to decimal	2M				
	b)	(11001101.0101) ₂ to octal	3M				
	c)	(53.1575) ₁₀ to binary	3M				
	d)	(11010001.1110) ₂ to hexa decimal	3M				
0	e)	$(425.125)_{10}$ to base 5	ЗM				
Ζ.	a)	For the given Boolean function F = xy'z + x'y'z + w'xy + wx'y + wxy. i. Draw the logic diagram					
		ii. Simplify the function to minimal literals using Boolean algebra.	6M				
	b)	Obtain the Dual of the following Boolean expressions.	OW				
	0)	i. $AB'C + A'B'D + A'B'$ ii. $ABCD + AB'C'D + A'B'CD$	4M				
	c)	Obtain the complement of the following Boolean expressions.					
	-,	i. A'B + A'BC' + A'BCD + A'BC'D'E ii. ABEF + ABE'F' + A'B'EF.	4M				
3.	a)	Define k-map? Reduce the function					
		F(A,B,C,D,E)= (0,2,4,6,9,13,21,23,25,29,31) using a suitable k-map.	10M				
	b)	Mention the disadvantages of k-map?	4M				
4.	a)	Define Multiplexer? Design a 4 X 1 multiplexer?	5M				
	b)	Define Full Adder? Explain the design procedure of Full Addet in detail?	4M				
	c)	Design a 4-bit Binary adder?	5M				
5.	a)	Draw the logic diagram of a JK flip-flop and using excitation table, explain its operation.					
	b)	Design a 4-bit Binary ripple down-counter using a negative edge triggered D flip-flops.	8M				
6	a)	Explain about the analysis of the clocked sequential circuits in detail with an example.	7M				
	b)	Explain about state reduction and assignment with an example.	7M				
7.	a)	What is an asynchronous sequential circuit? Explain the design procedure?	6M				
	b)	An asynchronous sequential circuit has two internal states and one output. The excitation					
		and output functions describing the circuit are: $X_{1} = X_{2}X_{3}X_{4}X_{5}X_{5}X_{5}X_{5}X_{5}X_{5}X_{5}X_{5$					
		$Y_1 = x_1x_2 + x_1y_2' + x_2'y_1$, $Y_2 = x_2 + x_1y_1'y_2 + x_1'y_1$, $Z = x_2 + y_1$ i. Draw the logic diagram of the circuit.					
		ii. Derive the transition table and output map.					
		iii. Obtain a flow table for the circuit.	8M				
8.	a)	Draw the block diagram and explain in detail about the PAL?	3M				
	b)	Implement the following Boolean functions using a PAL that has two sections with three					
	,	product terms each:					
		$F_1(A,B,C,D) = (2,12,13) \text{ and } F_2(A,B,C,D) = (7,8,9,10,11,12,13,14,15).$	8M				
	C.	Draw the Logic diagram and HDL representation of XOR gate.	ЗM				

Hall Tic	ket Number :							
Code: 1	R-11 / R-	13						
Coue.	II B.Tech. I Semester Supplementary Examinations May 2018							
	Electronic Devices and Circuits							
	(Common to CSE & IT)							
Max. N	Aarks: 70 Time: 3 H Answer any five questions	ours						
	All Questions carry equal marks (14 Marks each)							
1. a)	Draw and explain the V-I characteristics of a Zener diode. What are the two breakdown mechanisms in a Zener diode?							
b)	A diode operating at 300°k at a forward voltage of 0.4V carries a current of 10mA. When voltage is changed to 0.42V, the current becomes twice.							
	Calculate the value of reverse saturation current and for the diode.	7M						
2. a)	With a neat circuit diagram and necessary wave forms explain the operation of bridge rectifier.							
b)	A voltage V=300 cos t is applied to a half wave rectifier, with $R_L=5K$. the rectifier may be represented by ideal diode in series with a resistance of 1K . Calculate I_m , I_{RMS} , I_{DC} , P_{DC} , P_{AC} and efficiency.							
3. a)	Draw and explain the input and output characteristics of a transistor in CE configuration. Indicate cut-off, saturation and active region in the characteristics.							
b)	What is meant by early effect in the case of transistor and explain the consequences.							
4. a)	What is the need for biasing? Explain the Voltage divider biasing with neat circuit diagram and analysis.							
b)	What are the compensation techniques used for V_{BE} and $I_{\text{CO}}?$ Explain with the help of suitable circuits.	8M						
5. a)	Draw the symbol and structure of an n-channel JFET and explain the operation. Why is the name field effect transistor used for the device?							
b)	With the neat sketch explain the drain source and transfer characteristics of enhancement type MOSFET.	8M						
6. a)	Draw the h parameter model for CE Amplifier and derive the expression for A_I , R_I , A_V and Y_0 .	10M						
b)	List out the advantages of complementary symmetry configuration over push pull configuration.	4M						
7. a)	Explain the concept of feedback. Draw the circuit diagram of voltage- series feedback amplifier and explain the effect of negative feedback on voltage gain, input impedance and output impedance of an amplifier.	10M						
b)	What are the advantages and disadvantages of the positive feedback amplifiers?	4M						
8. a)	Draw the circuit diagram of Wein-bridge oscillator and derive the expression for the frequency of oscillation.	8M						
b)	In Colpitts oscillator of frequency 318.5kHz, L=1mH and C1=500pF. Calculate the value of C2.	6M						
	***	0.01						

Hall Ticket Number :						
Code: 1G133	₹-13					
II B.Tech. I Semester Supplementary Examinations May 2018						
Mathematical Foundations of Computer Science						
(Common to CSE & IT) Max. Marks: 70 Time: 3 I	Hours					
Answer any five questions All Questions carry equal marks (14 Marks each) ********						
1. a) Define a Statement and its Notations with the help of examples.	4M					
b) Show that S V R is tautology implied by $(P \lor Q)$ $(P r)$ $(Q S)$.	10M					
2. a) Define Quantifiers and write all the properties of Quantifiers with Examples.	8M					
b) Write a short note on Automatic theorem of proving.	6M					
3. a) Define a Relation and explain the different types of representing the Relations.	6M					
 b) Let x= { 2,3,6,12,24,36} and the relation be such that x y if x divides y. Dr the Hash diagram. 	aw 8M					
4. a) Show that a set of all non zero real numbers is a group with respect to multiplicati	ion 6M					
b) Let R be a group of all real numbers under addition and R ⁺ be a group of all posit						
real numbers under multiplication. Show that the mapping $f: R = R^+$ defined $f(x) = 2^x$ for all $x = R$ is an isomorphism.	by 8M					
5. a) Write a short note on Pigeon Hole Principles and its applications.	8M					
b) In how many ways can 7 women and 3 men be arranged in a row if the 3 men m always stand next to each other?	ust 6M					
always stand hext to each other?	OIVI					
6. a) Solve the following recurrence relation by substation Method.						
$a_n = a_{n-1} + 1/n(n+1)$, Where $a_0=1$.	8M					
b) Define Recurrence Relation and its Properties.	6M					
7. a) Define a Graph and Explain the different types of representing a Graph.	8M					
 b) Define a Spanning Tree and write the step by step Procedure for finding the Spann Tree by using Krushkal's Algorithm 	ing 6M					
8. a) Write a Short note on Hamiltonian Graph with Example.	6M					
 b) What is meant by Chromatic Number and write the step by step procedure for find the Chromatic Number of a Graph. 	ing 8M					
