(Civil Engineering)

Fluid Mechanics

Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Define and derive Pascal's law
b) A hydraulic press has a ram of 30 cm diameter and a plunger of 5 cm diameter. Find the weight lifted by the hydraulic press when the force applied at the plunger is 400 N ?
2. a) Define 'Total Pressure' and 'Centre of Pressure'
b) A gate is placed at 60° inclined to the horizontal and supported by a hinge at a vertical height of 3 m from the bottom. Find the height h of water on the other side of the gate so that the gate tips about the hinge. Take the width of the gate as unity.
3. a) Define uniform and non-uniform; laminar and turbulent flows
b) Define and distinguish between stream line, path line and streak line. 7M
4. a) Derive the Euler's equation for steady flow along a stream
b) Define the terms Kinetic energy correction factor and momentum correction factor.
5. a) Derive Darcy-Weisbach equation for turbulent flow.
b) Explain the terms 'Total Energy line' and 'Hydraulic gradient line'.
6. a) What is the difference between pitot-tube and pitot-static tube?
b) Pitot-static tube is used to measure the velocity of water in a pipe. The stagnation pressure head is 6 m and static pressure head is 5 m . Calculate the velocity of flow assuming $\mathrm{C}_{\mathrm{v}}=0.98$.
7. a) Describe Reynolds experiment to demonstrate the two types of flow.
b) Describe characteristics of Laminar and Turbulent flows?
8. Water is flowing through a pipe of diameter 30 cm at a velocity of $4 \mathrm{~m} / \mathrm{s}$. Find the velocity of oil flowing in another pipe of diameter 10 cm if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil is given as 0.01 poise and 0.025 poise. Take ' G ' of oil as 0.8 .

Answer any five questions

All Questions carry equal marks (14 Marks each)
1.

Find the Eigen values and eigenvectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$
2. Express $f(x)=x$ as half range sine and cosine series in $0<x<2$
3. a) Form a partial differential equation by eliminating the arbitrary constants

$$
z=a x+b y+a^{2}+b^{2} .
$$

b) Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and $g(y)$ from $z=y f(x)+x g(y)$.
4. Using Lagrange is interpolation formula find the value of $f(10)$ from the following table

x	5	6	9	11
y	12	13	14	16

5. Apply Runge -Kutta method to find an approximate value of y for $x=0.2$ in step of 0.1 if $\frac{d y}{d x}=y^{2}+x$, given that $y=1$, when $\mathrm{x}=0$.
6. Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ by using
(i) Trapezoidal rule, ii) Simpson's $1 / 3$ rd rule, iii) Simpson's $3 / 8$ rd rule
7. If $f(z)$ regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
8. Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ with $\mathrm{C}:|z|=3$ using Cauchy's Integral Formula

Code: 1G631

|| B.Tech. I Semester Supplementary Examinations November 2019
 Strength of Materials-I

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours

Answer any five questions

All Questions carry equal marks (14 Marks each)
$* * * * * * * * *$

1. An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in figure. If the Young's modulus is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Determine
(i) Stresses in each section and (ii) Total extension of bar.

Section 3

2. A Simply supported beam of length 8 m , carries a point load of 3 KN and 6 KN at a distance of 2 m and 6 m from the left end. Draw the Shear Force and Bending Moment Diagrams.
3. Determine the maximum stress induced in a cast iron pipe of external diameter 50 mm , internal diameter 30 mm and of length 5 m , when the pipe is supported at its ends and carries a point load of 8 KN .
4. A rectangular beam of 150 mm wide and 300 mm deep is subjected to a maximum shear force of 60 KN . Determine (i) Average shear stress, (ii) Maximum shear stress and (iii) Shear stress at a distance of 25 mm above neutral axis.
5. A beam of length 5 m and of uniform rectangular section is supported at its ends and carries uniformly distributed load over the entire length. Calculate the depth of the section if the maximum permissible bending stress is $8 \mathrm{~N} / \mathrm{mm}^{2}$ and central deflection is not to exceed 10 mm . Take $\mathrm{E}=1.2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
6. A Cantilever beam of length 3 m carries a uniformly distributed load over the entire length. If the deflection at the free end is 40 mm , find the load W and slope at the free end.
7. Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of the major principal stress and maximum intensity of shear stress in the material at the point in a strained material at one point, the principal stresses are $100 \mathrm{~N} / \mathrm{mm}^{2}$ tensile and $60 \mathrm{~N} / \mathrm{mm}^{2}$ compressive..
8. Explain briefly about Maximum strain energy theory of failure.

