												1			
Hall	Tick	ket Number :										<u></u>	Г	.	
Code: 1G131								L	R-11						
Last Chance Special Supplementary Examinations															
II B.Tech. I Semester Supplementary Examinations July 2021															
Advanced Data Structures Through C++															
(Information Technology)															
Max	к. М	arks: 70												Time: 3	Hours
Answer any five questions All Questions carry equal marks (14 Marks each)															
		All	20es	nor	IS CC	iiry e	****	۵۱۱۱۱۵ *****	JIKS	(147	Mark	s ec	ichj		
1.		What are co	nstruc	ctor	& de	estru	ctor?	Illus	trate	defa	ault <i>:</i>	and a	vaoc	constructors	3
		with suitable													-
2.		Evolain inheri	itance	s tvn	os in	Ст.	L with		mnle						
Ζ.	. Explain inheritance types in C++ with example														
3.		What is ADT? Explain the implementation of Stack ADT in detail.													
4.	a)	Define i) Hash Table ii) Hash Function iii) Bucket iv) Home Bucket													
	b)	Explain linear	probi	ng n	netho	d of	hashi	ing w	ith su	uitabl	e exa	ample).		
5.	a)	What is heap?	? Diffe	erent	iate k	betwe	een m	nin he	eap a	ind m	nax h	eap?			
	b)	Discuss the m	odel f	for e	xtern	al so	orting								
6.		Define Binary	Sear	ch T	ree?	Expl	ain a	bout	Bina	rv Tr	ee Tr	aver	sal Te	chnique with	h
0.		suitable exam		••••						.,					
7.		Describe abo	ut spl	ay t	rees	and	the o	pera	tions	on t	hem.				
8.	a)	What is patter	m ma	tchir	רמ? F	zola	in in	detai	ΙΒον	/er-M	loore	Alao	rithm	by taking a	า
0.	u)	example?			.g. L			2010	. 209			,go		s, taking a	
	b)	What are tries	in da	ita si	tructu	ıre?									
							*:	* *							

Hall Ti	cket Number :								
Code:	1G334				<u> </u>			R-11	
		hance Sp	ecial Sup	opleme	entary	Exam	inatio	ns	
	II B.Tech. I S	-	-	-	-				
			onic Dev						
Max	Aarlas 70	(Ir	nformatio	n Techr	nology	()		Time of 2 Hours	
Max. I	Marks: 70	Ans	wer any	five a	iestic	ns		Time: 3 Hour	2
	All Qu	vestions c	,				s eac	h)	
			***	*****					
1. a)		gy band diag	gram of PN	junction	diode (under op	en circ	uit condition and	7
b)	explain. Describe the f	ollowing ter	ms (i) insul	ator (ii) (conduc	tor (iii)	semico	onductor with an	'
0)	example.	onowing ten			Sonauc		Schlico		7
2. a)	Develop Centr	e tapped full	wave recti	fier with i	ts oper	ation			8
b)	Write short not	es on i) RC	Filter ii) L F	ïlter					6
3. a)		• •				•	า.		7
b)	Write short not	es on i) DC	Load line ii)) Operati	ng poir	nt			7
4. a)	Write short not	es on i) The	rmal resista	ance ii) H	oat sin	k			7
ч. а) b)	What are the a	,							' 7
5)		avanagee c							
5. a)	With a neat ske	etch explain	the charact	teristics of	of MOS	SFET in e	enhance	ement mode.	8
b)	Explain the co	nstructional	details of JF	ET.					6
6. a)	Draw and expl	ain class A p	power ampl	ifier					7
b)	Compare the	class A and	class B Pov	wer ampl	ifiers				7
7 - `		- thus						_
7. a)	5	•						_	7
b)	Express the ef	iect of feedb	ack on I/p (maracter	ISTICS C	m currer	IL SELIES	<i>э</i> .	7
8. a)	Explain with a	circuit diagra	am the worl	kina of H	artlev (Oscillato	r		8
b)	•	•		•	•				6
				***	. ,				-

Hall Tic	ket Number :									
Code: 1	G133 R-11									
	Last Chance Special Supplementary Examinations II B.Tech. I Semester Supplementary Examinations July 2021 Mathematical Foundations of Computer Science									
(Information Technology) Max. Marks: 70 Time: 3 Hours										
	Answer any five questions All Questions carry equal marks (14 Marks each) ********									
1.a) b)	Define Tautology. Prove $[\bigcirc \rightarrow \xrightarrow{g} \rightarrow \bigcirc (g \rightarrow p)] \rightarrow \xrightarrow{g} \rightarrow (g \rightarrow p) \rightarrow \xrightarrow{g} \rightarrow \xrightarrow{g} \rightarrow \xrightarrow{g} \xrightarrow{g} \rightarrow \xrightarrow{g} \xrightarrow{g} \rightarrow \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g}$	6M								
	PV(P (QV(Q R)))	8M								
2. a)	Write all the Rules of inference formulas with help of Examples.	10M								
b)	Define Predicate Logic and Explain with help of examples.	4M								
3. a)	What are the different Properties of Binary Relations?	6M								
b)	Define a Function and explain various types of Functions with neat Diagrams.	8M								
4. a)	Define group, monoids, semi groups and subgroups with examples.									
b)	Define homomorphism and explain homomorphism of semi groups.									
5. a)	What is pigeonhole principle? Explain any two of its applications.	6M								
b)	In how ways can the letters of the word 'ORANGE' be arranged so that the consonants occupy only the even positions?									
6.	Find a generating functions for the following sequences i) 1,1,0,1,1, ii) 0,2,6,12,20,30,42,	14M								
7.	Define Minimal Spanning tree. Write Prim's algorithm to construct minimal spanning tree with example.									
8.	Define the following terms with suitable examples i) Euler path ii) Euler circuit iii) Multi graph iv) Hamiltonian cycle	14M								

	Hall	Ticket Number :	I						
L	Code: 1G133								
Il B.Tech. I Semester Supplementary Examinations August 2021									
Mathematical Foundations of Computer Science									
		(Common to CSE & IT)							
	Ma	x. Marks: 70 Time: 3 Hours							
Answer any five questions All Questions carry equal marks (14 Marks each) ********									
1.	a)	Write the following statements into symbolic form:							
		i) Mark is poor but happy.							
		ii) Mark is rich or unhappy.							
		iii) Mark is neither rich nor happy.iv) Mark is poor or he is both rich and unhappy.	6M						
	b)	Define Tautology. Show that the following statement formula is a tautology by using							
		truth table: (P Q) ((P Q) (Q P))	8M						
2.	a)	Explain Rules of inference.	6M						
	b)	Determine whether the conclusion C flows logically from the premises H_1 and H_2 using							
	ŗ	truth table.							
		i) $H_1 : P Q H_2 : P C: Q$							
~	-)	ii) $H_1: \sim P$ $H_2: P Q C: \sim (P Q)$	8M						
3.	a)	Define the following with example: i) Identity function							
		ii) One to one function							
		iii) Onto fuction	014						
	b)	iv) One to one correspondence. Define equivalence relation. Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(x, y) x-y \text{ is divisible by } 3\}$. Show	8M						
	D)	that R is an equivalence relation and draw the graph of R.	6M						
4.	a)	Define group, monoids, semi groups and subgroups with examples.	8M						
	b)	Define homomorphism and explain homomorphism of semi groups.	6M						
5.	a)	Define permutation. Consider the three letters a, b, c. How many arrangements of the							
	۲	letter a, b, c taken two at a time?	6M						
0	b)	Explain the principal of inclusion-exclusion	8M						
6.	a)	Define generating function. Find the generating function for the sequence 1,1,1,1,1,	4M						
	b)	Find the sequences generated by the following functions i) $2x^2(1-x)^{-1}$							
		i) $2x^3 + 1/(1-x)$	10M						
7.	a)	Define Minimal Spanning tree. Write Prim's algorithm to construct minimal spanning							
	,		10M						
	b)	Define planar graph with example.	7M						
8.	a)	Define the following terms with suitable examples							
		i) Euler path							
		ii) Euler circuit							
iii) Multi graph									
	. `	iv) Hamiltonian cycle	8M						
	b)	Write a short note on connected graphs with examples.	6M						
