Code: 4GC31

II B.Tech. I Semester Supplementary Examinations February 2022

Mathematics-II

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Test for consistency and solve $5 x+3 y+7 z=4 ; 3 x+26 y+2 z=9$; $7 x+2 y+10 z=5$
b) Show that the Eigen values of diagonal matrix are just the diagonal elements of the matrix
2. a) Determine the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$
b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 3 & 3 & 1\end{array}\right]$ and hence find A^{4}.

UNIT-II

3. a) Find the Cubic polynomial which takes the values. $y(0)=1, y(1)=0$, $y(2)=1$ and $y(3)=10$
b) Using Newton-Raphson Method, compute $\sqrt{41}$ correct to four decimal places

OR

4. Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and backward interpolation formula.

x	20	25	30	35	40	45
y	354	332	291	260	231	204
UNIT-III						

5. Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1$

OR

6. Using Picard's process of successive approximation, obtain a solution up to fifth approximation of the equation $\frac{d y}{d x}=x+y$ such that $y=1$ when $\mathrm{x}=0$. Check your answer by finding the exact solution.

UNIT-IV

7. a) Find the Fourier series expansion for $f(x)=e^{x}$ in $0<x<2 \pi$
b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z=a x+b y+a^{2}+b^{2}$

OR

8. Form the partial differential equation by eliminating arbitrary function from $F\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$

UNIT-V

9. a) Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=\frac{1}{r} \frac{\partial u}{\partial \theta}$
b) Evaluate $\int_{c} \frac{e^{z}}{(z-1)^{3}} d z$ with $\mathrm{C}:|z-1|=\frac{1}{2}$ using Cauchy's Integral Formula

OR

10. a) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is
analytic everywhere.
b) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} d z$ with C: $|z|=2$ using Cauchy's Integral Formula
