\square

Code: 4GC31

II B.Tech. I Semester Supplementary Examinations May 2017

Mathematics -II

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

1. a) Find the values of a and b for which the equations $x+a y+z=3, x+2 y+2 z=b, x+5 y+3 z=9$ are consistent. When will these equations have a unique solution?
b) Find the rank of the matrix $\left[\begin{array}{cccc}5 & 5 & 5 & 5 \\ 1 & 4 & 0 & 7 \\ 0 & -2 & 1 & 3\end{array}\right]$ by reducing it into Row-Echelon form.
2. a) Prove that the sum of the eigen values of a matrix is the sum of the elements of the principal diagonal.
b) Verify Cayley-Hamilton theorem for $\mathrm{A}=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence find A^{-1} and A^{3}.

UNIT-II
3. a) Find a recurrence formula to calculate \sqrt{N} using Newton-Raphson method and hence evaluate $\sqrt{17}$.
b) Estimate the values of $f(1.2)$ and $f(2)$ from the date given.

x	1	1.4	1.8	2.2
$f(x)$	3.49	4.82	5.96	6.5

OR
4. \quad The following table gives the velocity v of a particle at time t :

$t(\mathrm{sec})$	0	2	4	6	8	10	12
$v(\mathrm{~m} / \mathrm{s})$	4	6	16	34	60	94	136

Find the distance moved by the particle in 12 seconds and also the acceleration at $t=6$ seconds.

UNIT-III

5. Find $y(0.1)$ and $y(0.5)$ by Taylor's series method from $\frac{d y}{d x}=x y+1, y(0)=1$. Compare the numeric solution with its exact solution.

OR

6. Apply Milne's method to find a solution of $\frac{d y}{d x}=x-y^{2}, y(0)=0$ in the range $0 \leq x \leq 1$.

UNIT-IV

7. Obtain Fourier series of a function $f(x)=|x|,-\pi<x<\pi$ and hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+---=\frac{\pi^{2}}{8}$.

OR

8. a) Form the partial differential equation by eliminating arbitrary constants a, b, c from $(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}$.
b) Solve $\frac{\partial^{2} z}{\partial x \partial y}-\frac{x}{y}=100$ by the method of separation of variables.

UNIT-V

9. Find the analytic function $f(z)=u+i v$, if $2 u+v=e^{x}(\cos y-\sin y)$.

OR

10. a) Evaluate $\oint_{c} \frac{e^{z} \cos z}{\left(z-\frac{\pi}{2}\right)^{2}} d z$, where c is $|z|=2$. 10M
b) Evaluate $\oint_{c} z^{2} \cot z d z$, where c is the unit circle.

II B.Tech. I Semester Supplementary Examinations May 2017 Fluid Mechanics

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) ********

UNIT-I

1. a) State and prove Pascal's law
b) The surface tension of water in contact with air at $20^{\circ} \mathrm{C}$ is $0.078 \mathrm{~N} / \mathrm{m}$. The pressure inside a water droplet is $0.22 \mathrm{KN} / \mathrm{m}^{2}$ greater than the outside pressure. Calculate the diameter of the water droplet. Derive the equation used.

OR

2. a) Derive an expression for total pressure for a vertical plane surface submerged in liquid.
b) A circular plate 3 m diameter is immersed in water in such a way that its greatest and least depth below the free surface is 4 m and 1.5 m respectively. Determine the total pressure on one face of the plate and position of the centre of pressure.

UNIT-II

3. a) Describe the use and limitations of flow nets
 satisfy the continuity equation.

OR

4. a) What is impulse-momentum theorem? Derive the same
b) Water under pressure of $3.924 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$ is flowing through a 0.3 m pipe at the rate of 0.25 cumecs. If the pipe is bent by 135°, find the magnitude and direction of the resultant force on the bend.

UNIT-III

5. a) Explain the laws of fluid friction
b) Determine the difference in the elevations between the water surfaces in the two tanks which are connected by a horizontal pipe of diameter 0.30 m and length 400 m . The rate of flow of water through the pipe is $0.30 \mathrm{~m}^{3} / \mathrm{sec}$. Consider all losses and take the value of $f=0.016$.

OR

6. a) Sketch a Pitot tube and explain how it is used to measure the velocity of a flowing liquid
b) The inlet and throat diameter of a Venturimeter are 0.3 m and 0.15 m , respectively. The liquid flowing through the meter is water. The pressure intensity at inlet is $137.34 \mathrm{kN} / \mathrm{m}^{2}$, while the vacuum pressure head at the throat is 0.37 m of mercury. Find the rate of flow. Assume that 4% of the differential head is lost between the inlet and the throat. Find also the value of C_{d} for the Venturimeter.

UNIT-IV

7. a) What do you mean by Viscous flow? 2Mb) An oil of viscosity $0.1 \mathrm{~N}-\mathrm{Sec} / \mathrm{m}^{2}$ and relative density 0.90 is flowing through acircular pipe of diameter 50 mm and of length 300 m . The rate of flow of fluidthrough the pipe is $0.0035 \mathrm{lit} / \mathrm{sec}$. Find the pressure drop in a length of 300 mand also the shear stress at the pipe wall.12M
OR
8. a) What is the difference between hydro dynamically smooth and rough pipes? 4Mb) Calculate: (i) the pressure gradient along flow, (ii) the average velocity, and(iii) the discharge for an oil of viscosity $0.02 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ flowing between twostationary parallel plates 1 m wide maintained 10 mm apart. The velocitymidway between the plates is $2 \mathrm{~m} / \mathrm{s}$10M
UNIT-V
9. a) Explain the term "dimensionally homogeneous equation" 4M
b) A spillway model is to be built to geometrically similar scale of $1 / 50$ across aflume of 600 mm width. The prototype is 15 m high and maximum head on itis expected to be 1.5 m . (i) what height of model and what head on the modelshould be used? (ii) If the flow over the model at a particular head is $0.012 \mathrm{~m}^{3}$per second, what flow per metre length of the prototype is expected? (iii) If thenegative pressure in the model is 200 mm , what is the negative pressure inprototype? Is it practicable?

OR

10. a) Define and explain Reynold's number, Froude's number and Mach number. 6M
b) The discharge Q over a small rectangular weir is known to depend upon the head H over the weir, the weir height P, gravity g, width of the weir L and fluid properties: density ρ, dynamic viscosity μ and surface tension σ. Express the relationship between the variables in dimensionless form 8M

Code: 4G632

II B.Tech. I Semester Supplementary Examinations May 2017

Surveying

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
\qquad

UNIT-I

1. a) A chain line CDE crosses a river, D and E being on the near and distant banks respectively. A perpendicular DF, 54 m long, is set out as D on the left of the chain line. The respective bearings of E and C taken as F are $67^{\circ} 30^{\prime}$ and $157^{\circ} 30^{\prime}$. Find the chainage of E, given that $C D$ is 27 m and the chainage of D is 376.5 m .
b) Explain the following.
(i) True bearings
(ii) Magnetic declinations

OR

2. a) What is meant by chain surveying? Explain its principle.
b) The following offsets were taken from a chain line to a hedge.

Distance in m	0	0	8	16	24	32	48	64	88	112
Offset in m	$:$	3.76	4.32	5.44	4.88	3.84	3.36	3.00	2.52	1.84

3. Two pegs A and B were 750 m apart across a wide river. The following readings were taken with one level

Level at	Reading on	
	A	B
A	1.543	2.847
B	1.422	2.622

The error in the collimation adjustment of the level was +0.002 m per 100 m . Determine the true difference of level between A and B and the refraction

OR
4. Explain the characteristics of contour lines and their uses

UNIT-III

5. Explain the temporary and permanent adjustments of vernier transit.

OR

6. The following are the interior angles of a closed traverse ABCDE. <A, $78^{\circ} 12^{\prime} 40^{\prime \prime}$: < B, $168^{\circ} 33^{\prime} 50^{\prime \prime} ;<\mathrm{C}, 84^{\circ} 22^{\prime} 30^{\prime \prime}$; < D, $115^{\circ} 43^{\prime} 25^{\prime \prime}<\mathrm{E}, 90^{\circ} 7^{\prime} 35^{\prime \prime}$. If the observed bearing of $A B$ is $138^{\circ} 42^{\prime} 20^{\prime \prime}$, compute the bearings of the remaining sides.

UNIT-IV

7. Explain the following.
(i) Anaiiatical lens
(ii) Inclined sights
8. Explain the components of a plane table with neat sketch.

UNIT-V

9. Explain the various methods of determining the length of a transition curve.

OR
10. Explain the following.
(i) Cubic spiral
(ii) Vertical curve
(iii) Reverse curve

